Petitioner's Exhibit 1

Shell Offshore Inc. 3601 C Street, Suite 1334 Anchorage, AK 99503

December 29, 2006

Daniel L. Meyer Office of Air, Waste and Toxics U.S. EPA, Region 10 1200 Sixth Avenue, OAQ-107 Seattle, WA 98101

Re: Shell Kulluk 40 CFR Part 55 Preconstruction Permit Application for the 2007 – 2009 Beaufort Sea OCS Exploration Drilling Program

Frontier Discoverer 40 CFR Part 55 Preconstruction Permit Application for the 2007 – 2009 Beaufort Sea OCS Exploration Drilling Program

Dear Mr. Meyer:

Please find enclosed two minor source air permit applications for the Shell Kulluk and the Frontier Discoverer exploratory drilling programs. The applications are a follow-up on Shell Offshore, Inc.'s March 22, 2006, notice of intent (NOI) letter to EPA to conduct exploratory drilling activity on its OCS lease-holding blocks located on the Beaufort Sea, Alaska. As you recall, EPA and Shell Offshore, Inc. (SOI) previously discussed the air permitting requirements for these two exploratory drilling programs this past September. Shell believes the two air permit applications comport with our mutual understanding of the EPA permitting requirements, including the ambient air quality impact analysis required under Alaska regulation for minor sources.

Shell will need a pre-construction permit by April 2007 to meet its anticipated August 1, 2007, project start date. As you can imagine, the ice conditions in the Beaufort Sea can significantly affect the project start date and the potential length of each drilling season, and thus any significant delay beyond April 2007 could threaten the 2007 drilling season. Representatives from AES Regulatory & Technical Services (AES RTS), Shell, and AES RTS's sub-contractor, Air Sciences Inc., will be available to assist the EPA in any way to process the air permitting documents. If you have any questions regarding this submittal, please contact Wayne Wooster, Air Sciences Inc., at (503) 525-9394 or at wwooster@airsci.com. For any questions regarding the project, please contact me (907) 770-3700 or at susan.childs@shell.com

Sincerely yours,

Shell Offshore, Inc.

Susan Childe

Susan Childs Regulatory Coordinator, Alaska

Enclosures

Mr. Daniel L. Meyer December 29, 2006 Page 2 of 2

cc: Anita Frankel, EPA Region 10 Rick Fox, Shell Susan Childs, Shell Keith Craik, Shell Brad Boschetto, Shell Kate Marstall, Shell Bill Walker, ADEC, DAQ Jeff Walker, MMS Rance Wall, MMS Don Perrin, ADNR, OPMP Kyle Parker, Patton & Boggs John Iani, VanNess Feldman Gene Pavia, AES RTS Greg Horner, AES RTS Wayne Wooster, Air Sciences Inc.

Outer Continental Shelf Pre-Construction Air Permit Application

Shell Kulluk 2007 – 2009 Beaufort Sea Exploratory Drilling Program

Prepared for: SHELL OFFSHORE , INC.

PROJECT 180-15 DECEMBER 29, 2006

CONTENTS

1 INTRODUCTION AND PROJECT DESCRIPTION	1
2 SOURCE DESCRIPTION AND EMISSIONS EVALUATION	
 2.1 Shell Kulluk Fleet Configuration 2.2 Shell Kulluk Fleet Emission Sources and Emission Estimate 2.3 Shell Kulluk Owner Requested Limit (ORL) 	
3 REGULATORY APPLICABILITY	
 3.1 EPA Guidance and 40 CFR Part 55 NOIs 3.2 EPA and ADEC Agency Permitting Roles	
4 AMBIENT IMPACT ANALYSIS (DISPERSION MODELING)	15
 4.1 Source Characterization 4.2 Modeled Emissions 4.3 Model Selection	
4.4 Meteorological Data 4.5 Background Concentrations	
4.6 Evaluation Methodology	
4.7 Modeling Results	

Page

Tables

Table 2:Shell Kulluk Fleet 2008 – 2009 Emissions Estimate with Nordica/Fennica7Table 3:Shell Kulluk Fleet Diesel Fuel Consumption Estimate with Tor Viking II7Table 4:Shell Kulluk Fleet Diesel Fuel Consumption Estimate with Nordica/Fennica7Table 5:Shell Kulluk Project ORL Variables with Tor Viking II9Table 6:Shell Kulluk Project ORL Variables with Nordica/Fennica10Table 7:Shell Kulluk Source Stack Parameters17Table 8:Support Vessel Source Stack Parameters21Table 9:Modeled NOx Emissions22Table 10:Modeled PM10 Emissions23Table 11:Modeled SO2 Emissions23Table 12:Wind Speed and Stability Class Combinations Used by the SCREEN3 Model24Table 13:Background Concentrations25Table 14:Conversion Factors for Screen3 Modeling26	Table 1: Shell Kulluk Fleet 2007 Emissions Estimate with Tor Viking II	7
Table 4: Shell Kulluk Fleet Diesel Fuel Consumption Estimate with Nordica/Fennica7Table 5: Shell Kulluk Project ORL Variables with Tor Viking II9Table 6: Shell Kulluk Project ORL Variables with Nordica/Fennica10Table 7: Shell Kulluk Source Stack Parameters17Table 8: Support Vessel Source Stack Parameters21Table 9: Modeled NOx Emissions22Table 10: Modeled PM10 Emissions23Table 11: Modeled SO2 Emissions23Table 12: Wind Speed and Stability Class Combinations Used by the SCREEN3 Model24Table 13: Background Concentrations25Table 14: Conversion Factors for Screen3 Modeling25	Table 2: Shell Kulluk Fleet 2008 – 2009 Emissions Estimate with Nordica/Fennica	7
Table 5: Shell Kulluk Project ORL Variables with Tor Viking II9Table 6: Shell Kulluk Project ORL Variables with Nordica/Fennica10Table 7: Shell Kulluk Source Stack Parameters17Table 8: Support Vessel Source Stack Parameters21Table 9: Modeled NOx Emissions22Table 10: Modeled PM10 Emissions23Table 11: Modeled SO2 Emissions23Table 12: Wind Speed and Stability Class Combinations Used by the SCREEN3 Model24Table 13: Background Concentrations25Table 14: Conversion Factors for Screen3 Modeling25	Table 3: Shell Kulluk Fleet Diesel Fuel Consumption Estimate with Tor Viking II	7
Table 5: Shell Kulluk Project ORL Variables with Tor Viking II9Table 6: Shell Kulluk Project ORL Variables with Nordica/Fennica10Table 7: Shell Kulluk Source Stack Parameters17Table 8: Support Vessel Source Stack Parameters21Table 9: Modeled NOx Emissions22Table 10: Modeled PM10 Emissions23Table 11: Modeled SO2 Emissions23Table 12: Wind Speed and Stability Class Combinations Used by the SCREEN3 Model24Table 13: Background Concentrations25Table 14: Conversion Factors for Screen3 Modeling25	Table 4: Shell Kulluk Fleet Diesel Fuel Consumption Estimate with Nordica/Fennica	7
Table 7: Shell Kulluk Source Stack Parameters 17 Table 8: Support Vessel Source Stack Parameters 21 Table 9: Modeled NO _x Emissions 22 Table 10: Modeled PM ₁₀ Emissions 23 Table 11: Modeled SO ₂ Emissions 23 Table 12: Wind Speed and Stability Class Combinations Used by the SCREEN3 Model 24 Table 13: Background Concentrations 25 Table 14: Conversion Factors for Screen3 Modeling 25		
Table 7: Shell Kulluk Source Stack Parameters 17 Table 8: Support Vessel Source Stack Parameters 21 Table 9: Modeled NO _x Emissions 22 Table 10: Modeled PM ₁₀ Emissions 23 Table 11: Modeled SO ₂ Emissions 23 Table 12: Wind Speed and Stability Class Combinations Used by the SCREEN3 Model 24 Table 13: Background Concentrations 25 Table 14: Conversion Factors for Screen3 Modeling 25	Table 6: Shell Kulluk Project ORL Variables with Nordica/Fennica	
Table 9: Modeled NOx Emissions22Table 10: Modeled PM10 Emissions23Table 11: Modeled SO2 Emissions23Table 12: Wind Speed and Stability Class Combinations Used by the SCREEN3 Model24Table 13: Background Concentrations25Table 14: Conversion Factors for Screen3 Modeling25	Table 7: Shell Kulluk Source Stack Parameters	
Table 10:Modeled PM10 Emissions23Table 11:Modeled SO2 Emissions23Table 12:Wind Speed and Stability Class Combinations Used by the SCREEN3 Model24Table 13:Background Concentrations25Table 14:Conversion Factors for Screen3 Modeling25	Table 8: Support Vessel Source Stack Parameters	21
Table 11: Modeled SO2 Emissions23Table 12: Wind Speed and Stability Class Combinations Used by the SCREEN3 Model24Table 13: Background Concentrations25Table 14: Conversion Factors for Screen3 Modeling25		
Table 12: Wind Speed and Stability Class Combinations Used by the SCREEN3 Model24Table 13: Background Concentrations25Table 14: Conversion Factors for Screen3 Modeling25	Table 10: Modeled PM ₁₀ Emissions	
Table 13: Background Concentrations 25 Table 14: Conversion Factors for Screen3 Modeling 25	Table 11: Modeled SO ₂ Emissions	
Table 14: Conversion Factors for Screen3 Modeling	Table 12: Wind Speed and Stability Class Combinations Used by the SCREEN3 Model	
	Table 14: Conversion Factors for Screen3 Modeling	

CONTENTS - continued

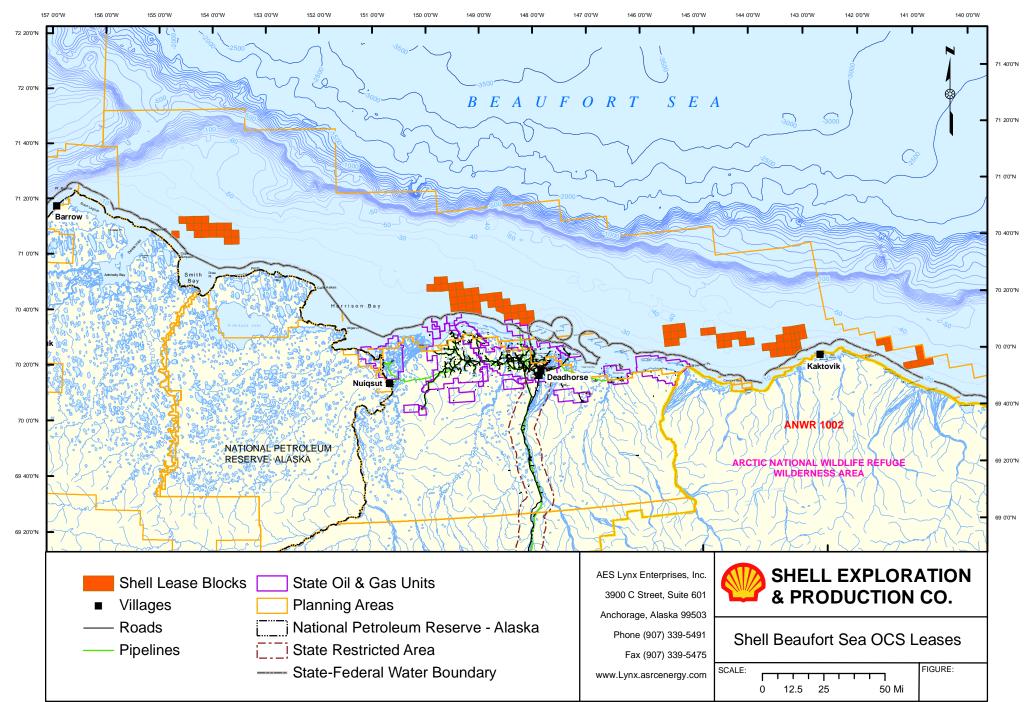
Figures

Figure 1:	Project Location Map	2
Figure 2:	Configuration of Platform Equipment	18
Figure 3:	Modeling Configuration for Drill Rig and Support Vessels	19

Appendices

- Appendix A: Drawings and Photographs
- Appendix B: Emission Calculations
- Appendix C: ADEC Owner Requested Limit Forms
- Appendix D: 40 CFR Part 55 NOI Letters
- Appendix E: Modeling Calculations and SCREEN3 Model Output

SECTION 1 INTRODUCTION AND PROJECT DESCRIPTION


This application is submitted to U.S. EPA's Region 10 (EPA) office, pursuant to the requirements of Outer Continental Shelf Air Regulations, 40 CFR Part 55. Shell Offshore, Inc. (SOI) wishes to conduct exploratory drilling activity at its oil and gas lease blocks on Outer Continental Shelf (OCS) waters in the Beaufort Sea using the Kulluk drilling vessel and associated support vessels. Because of distance from the Alaska shore, the drilling activities will be regulated by the U.S. EPA rather than the Alaska Department of Environmental Conservation (ADEC). Figure 1 shows the locations of SOI's Beaufort Sea OCS lease blocks. SOI intends to conduct a three-year exploratory drilling program, 2007 through 2009, although drilling activity may occur in 2010 and 2011 if ice conditions prevent significant exploratory drilling activity in 2007, 2008, or 2009.

SOI believes that the available drilling season will range up to 120 days per calendar year, weather and ice conditions permitting. SOI anticipates that the drilling operations per drill site will range between 30 and 60 days. SOI, therefore, anticipates drilling up to three drill site locations per year. The drilling season is projected to run from approximately August 1 through November 30 each year, again weather and ice conditions permitting. Ice conditions in the Beaufort Sea were particularly heavy in 2006 resulting in a significantly less than an expected 90-day available drilling season. Pursuant to the 40 CFR 55.2 OCS source definition, each drill site is a stationary source, so the Shell Kulluk drilling activities could consist of a maximum of three sequential stationary sources per year. This application is, in fact, a single application for multiple portable stationary sources, all of which will be equal to or smaller than the hypothetical stationary source described herein.

SOI intends to conduct drilling operations in 2007 at its OCS lease block locations in Camden Bay, located in the central Beaufort Sea. SOI may conduct exploratory drilling operations at its other OCS lease block locations in the Beaufort Sea in 2008 and 2009. The proposed 2007 drilling sites are located approximately 13 to 16 miles from the state of Alaska shoreline. Drilling activities will be curtailed in the event that large ice flows force the drilling vessel off of the drilling site. For example, SOI experienced seven days and fifteen days of "force offs," respectively, during its 1985 and 1986 Beaufort Sea exploration drilling program. In the event of an ice flow caused "force off," drilling activities will resume once favorable ice conditions allow the drilling vessel to safely return to the drilling site.

Each drill site will carry with it a safety exclusion zone around the Shell Kulluk, established by the U.S. Coast Guard around the Shell Kulluk, protecting ocean traffic from possible entanglement with the Shell Kulluk anchors and any close-in related anchor and ice management. This safety exclusion zone establishes the ambient air boundary around the stationary source.

1

Lynx: 15067-204.mxd, 11/08/06, R00

SOURCE DESCRIPTION AND EMISSIONS EVALUATION

This section provides a description of the Shell Kulluk fleet configuration, a description of the project vessels emission units and a project vessel-wide emission estimate, and includes SOI's request for an owner requested limit (ORL) to maintain synthetic minor permit status.

2.1 Shell Kulluk Fleet Configuration

The Shell Kulluk Exploratory Drilling Program exploration drilling activities will be conducted from Shell's conical drilling unit (CDU), the Kulluk, and assisted by a number of associated support vessels. The Shell Kulluk is a purpose-built floating vessel with an Arctic Class IV hull design. The associated support vessels will include two icebreakers, a re-supply vessel, and an oil spill response (OSR) fleet. SOI intends to operate two different fleet configurations during the Shell Kulluk Exploratory Drilling Program. In 2007, SOI will utilize the Tor Viking II for secondary ice management activity whereas in 2008 and 2009 SOI intends to use either the Nordica or the Fennica for secondary ice management activity. The Vladimir Ignatjuk will perform primary ice management duty (ice breaking) for 2007 through 2009. The two icebreakers will also tow the Kulluk into and away from the OCS lease blocks each drilling season. The Jim Kilabuk will serve as the re-supply vessel. The Kulluk OSR fleet will consist of one larger vessel and a number of smaller craft. Photographs and diagrams of the Shell Kulluk and associated support vessels are provided in Appendix A.

The exploratory drilling process consists of three phases, drilling vessel placement, drilling operations, and drilling vessel removal, all of which are considered part of the stationary sources to be permitted.

Drilling vessel placement: Prior to the rig placement and anchoring to the seabed in federal OCS waters, the Shell Kulluk is simply a portable, floating marine vessel and as such is not triggering the definition of an OCS source. Pursuant to 40 CFR 55.2, the Shell Kulluk becomes an OCS source once it is placed and anchored to the seabed on OCS waters. The Shell Kulluk will be towed from the vicinity of the McKinley Bay, Northwest Territory prior to the 2007 exploratory drilling activity to the SOI lease-holding OCS drill site and maneuvered and anchored in place. Both ice management vessels (the Vladimir Ignatjuk and either the Tor Viking II or the Nordica/Fennica) will assist with the towing activity. One of the icebreakers will assist in the anchor management activity. The Shell Kulluk anchor pattern consists of 12 anchors, and each anchor will reach approximately 700 meters away from the Shell Kulluk. The entire anchor setting process is estimated to take less than 24 hours. SOI has contacted the U.S. Coast Guard to obtain a Safety Exclusion Zone around the Shell Kulluk pursuant to 33 CFR Part 147 to help ensure that the public remains at a safe distance from the drilling platform and marine support vessels. A copy of the Safety Exclusion Zone Application will be submitted to the EPA under a

separate cover. The U.S. Coast Guard routinely authorizes Safety Exclusion Zones up to 500 meters away from an OCS source, and thus SOI anticipates receiving a Safety Exclusion Zone of at least 500 meters from the edge of the Shell Kulluk drilling vessel. Following the rig placement and anchoring to the seabed, the two ice breakers will move away from the Shell Kulluk typically three to twelve miles (five to twenty kilometers) upwind to perform ice management activity.

Drilling vessel drilling operations: When the exploratory drilling operation is completed, the two icebreakers Following the rig placement and anchor setting, the Shell Kulluk will commence exploratory drilling operations (and become an OCS source as defined in 40 CFR 55.2). SOI intends to utilize the Shell Kulluk fleet configuration that includes the Tor Viking II to drill its deeper wells. SOI expects exploratory drilling operations to last about 45 days per site for the deeper wells and about 30 days per site for the shallower wells. Under ideal ice conditions and unanticipated drilling issues the drilling program could possibly continue for up to 75 days and 60 days, respectively, per lease block drill site location for the deeper and the shallower wells. SOI however considers a 59-day drilling program for the deeper wells and a 43-day drilling program for the shallower wells to represent a conservatively long estimate, and maximum emissions are based on the 59-day drilling program with the Tor Viking II and on the 43-day drilling program with the Nordica/Fennica. When the exploratory drilling operation is completed, the two icebreakers will assist in retrieving the Shell Kulluk anchors. This task will be completed in about 24 hours. The two icebreakers will then tow the Shell Kulluk to the next OCS lease-holding drill site location where the process is repeated. SOI will station its OSR fleet adjacent (typically within one to two kilometers) to the Shell Kulluk during periods of potential penetration into hydrocarbon bearing strata. The OSR fleet will be standing by in the case of a spill and will also conduct oil spill response drill exercises. The Shell Kulluk will be fully outfitted prior to the beginning of each drilling season. Personnel and some provisions will be shuttled to the Shell Kulluk from shore by helicopter. Diesel fuel and other provisions will be provided to the Shell Kulluk by the Jim Kilabuk every two to three weeks during the drilling season.

Drilling vessel removal: At the end of each drilling season the two icebreakers will tow the Kulluk to the vicinity of McKinley Bay or to another over-winter safe harbor in the Beaufort Sea.

2.2 Shell Kulluk Fleet Emission Sources and Emission Estimate

The Shell Kulluk Exploratory Drilling Program consists of the Shell Kulluk drilling vessel, two icebreaker vessels, a re-supply vessel, and an oil spill response (OSR) fleet. The sources of emissions for the Shell Kulluk and its associated marine support vessels consist primarily of internal combustion engines and heaters. There will be no flares or other industrial sources, except for one incinerator located on an icebreaker. The combustion sources consist of marine/non-road compression-ignition internal combustion engines, electrical generators, and boilers and heaters. All of these combustion sources will be fired with diesel fuel. The engines

will have the purpose of generating electricity, pumping, compressing, providing direct drive mechanical power, and for powering mobile machinery. The Shell Kulluk Exploratory Drilling Program emissions are generated from relatively few large emissions sources: the Shell Kulluk main drilling engines and the support vessels propulsion engines. For example, the Shell Kulluk main drilling engines and deck cranes engines account for 95 percent to more than 98 percent of the vessel emissions. In addition, the support vessels main propulsion engines/electrical generators account for 98 percent to more than 99 percent of the support vessel emissions. SOI estimates the Shell Kulluk drilling vessel will account for approximately 10 percent to 20 percent of the combined fleet emissions; the icebreaker vessels (the Vladimir Ignatjuk, the Tor Viking II and/or the Nordica/Fennica) will account for approximately 70 percent to 80 percent of the combined fleet emissions. SOI estimates the re-supply vessel, the Jim Kilabuk, will account for less than 1 percent of the combined fleet emissions. The Shell Kulluk Exploratory Drilling Program vessels, combustion sources identification, size rating, emission factor, hourly emissions, and project site yearly emissions are provided in Appendix B.

Below, SOI presents its maximum expected emissions from the stationary source so that the approximate split in emissions among all of the sources and the largest source units are apparent. The proposed compliance equation estimates emissions for these sources based on fuel consumption. As a practical matter of avoiding the tracking of inconsequential source units, the emissions for the smaller sources are proposed to be held constant. Any imprecision in these is assumed to be less than 5 tons per year so that even if the estimate is off by nearly 5 tons per year, the total NO_x emissions will remain below 250-tons-per-year major new source review threshold value.

Shell Kulluk Drilling Vessel: SOI believes the drilling vessel operations and thus emissions per drill site location will be fairly consistent irrespective of the Beaufort Sea ice conditions, and thus SOI can reasonably predict maximum emissions from the Shell Kulluk drilling vessel and can therefore estimate the drilling vessel emissions with a high degree of certainty. For example, SOI estimates the Shell Kulluk drilling vessel NO_x emissions from the Tor Viking II included fleet configuration will be approximately 49 tons or about 20 percent of the Prevention of Significant Deterioration (PSD) 250 ton-per-year major source review threshold.

Shell Kulluk Associated Support Vessels: SOI's prediction of maximum emissions from the associated support vessels, primarily the two icebreaker vessels, is imprecise; however, it is expected to account for 70 percent to 80 percent of the combined fleet emissions. The icebreaker vessels emissions will depend greatly on the ice conditions experienced in the Beaufort Sea with light ice conditions resulting in lesser engine load factor and lower emissions, and heavy ice conditions resulting in a higher engine load factor and higher emissions.

SOI in an attempt to estimate potential icebreaker vessels emissions evaluated the ice conditions in the Beaufort for the past three years and determined a weighted average of "open water," "moderate ice," and "heavy ice" conditions. For this permit application SOI assumed open water, moderate ice, and heavy ice conditions at 62 percent, 23 percent, and 15 percent, respectively. SOI applied a varying engine usage/load factor for each open water/ice condition to determine a weighted engine horsepower-hours factor for all of the associated vessel emission units. SOI obtained engine load factors from the support vessels owner and/or operator for each open water/ice condition. SOI then determined an "equivalent operating days" of operation for each emission unit using the engine load factors for each open water/ice condition. SOI applied the applicable engine emission factor (e.g., vendor specification, EPA AP42, etc.) to each of the emission units "equivalent operating days" to calculate the Shell Kulluk Exploratory Drilling Program estimated emissions (tons per year) per drill site. SOI believes the emissions from the Shell Kulluk drilling vessel will not be as dependent on open water/ice conditions except in the case of very heavy ice that the icebreaker vessels cannot safely and effectively manage and thus forces the drilling vessel off of the drill site. Likewise, SOI believes the emissions from the OSR fleet and the re-supply vessel will be unaffected by open water/ice conditions. The OSR fleet emission estimates conservatively assume that the OSR fleet would be with the drilling vessel for the duration of the drilling activity even though the potential days of a hydrocarbon release is less than the number of drilling days, i.e., drilling the mud line cellar, installing piping/casing, plugging the well.

SOI intends to collect generated on-site trash from the Shell Kulluk for off-site disposal/management and/or for incineration on one of the icebreaker vessels incinerators. SOI will not incinerate trash on the Shell Kulluk. Nor does SOI intend to flare drilling well off-gases during the project.

With a stationary source such as this, which includes large machinery that only operates at capacity for short periods of time, maximum emissions are based on an assemblage of reasonable maximum activity level assumptions, none of which are absolute maxima. These assumptions include length of drilling program, number of engines needed for drilling, time of icebreaker activity at maximum power, fleet configuration, etc. Using these assumptions (listed in Appendix B) the maximum emissions for NO_x, CO, PM₁₀, SO₂, and VOC for the Shell Kulluk combined fleet including the Tor Viking II per drill site per calendar year is estimated and the estimate presented in Table 1. A similar maximum emissions estimate for the Shell Kulluk combined fleet including the Nordica/Fennica is provided in Table 2. The estimated diesel fuel consumption for these emission estimates is presented in Tables 3 and 4. The emissions from all vessels associated with the drilling project have been calculated and included, following the requirements of 40 CFR 55.4(b)(3). The annual emissions of hazardous air pollutants (HAPs) from the Shell Kulluk and its associated support vessels are less than 10 tons for each HAP and less than 25 tons for all HAPs. All emission calculations are provided in Appendix B.

Table 1: Shell Kulluk Fleet 2007 Emissions Estimate with Tor Viking II

	NO _x	СО	PM ₁₀	VOC	SO ₂
Emissions	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Shell Kulluk	48.7	7.9	2.3	1.9	4.6
Vladimir Ignatjuk	162.9	44.5	3.6	7.2	10.5
Tor Viking II	21.1	19.8	1.7	2.9	6.4
Jim Kilabuk	1.6	0.4	0.04	0.06	0.09
Kulluk OSR Fleet	10.7	9.2	0.5	1.2	1.0
Total	245.0	81.8	8.1	13.3	22.6

Table 2: Shell Kulluk Fleet 2008 – 2009 Emissions Estimate with Nordica/Fennica

	NO _x	СО	PM ₁₀	VOC	SO ₂
Emissions	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Shell Kulluk	35.8	5.9	1.7	1.4	3.4
Vladimir Ignatjuk	117.0	32.2	2.6	5.2	7.5
Nordica/Fennica	83.0	2.9	1.8	2.9	5.5
Jim Kilabuk	1.2	0.3	0.03	0.06	0.07
Kulluk OSR Fleet	7.9	6.8	0.4	0.9	0.8
Total	245.0	48.0	6.5	10.5	17.3

Table 3: Shell Kulluk Fleet Diesel Fuel Consumption Estimate with Tor Viking II

	Quantity	Quantity
Material	gallons	cubic meters
Shell Kulluk drilling vessel	329,409	1,247
Vladimir Ignatjuk	709,461	2,686
Tor Viking II	429,663	1,626
Jim Kilabuk	6,728	25
Shell Kulluk OSR Fleet	67,864	257
Total Diesel Fuel Consumption	1,543,125	5,841

Table 4: Shell Kulluk Fleet Diesel Fuel Consumption Estimate with Nordica/Fennica

	Quantity	Quantity
Material	gallons	cubic meters
Shell Kulluk drilling vessel	242,265	917
Vladimir Ignatjuk	509,823	1,930
Nordica/Fennica	472,586	1,789
Jim Kilabuk	5,046	19
Shell Kulluk OSR Fleet	50,303	190
Total Diesel Fuel Consumption	1,432,801	5,424

2.3 Shell Kulluk Owner Requested Limit (ORL)

The drilling operation (stationary source) carries with it uncertainties in length of drilling at each site, weather and ice conditions associated in support of drilling at each site. Therefore, it is impossible to estimate precisely the quantity of emissions associated with each stationary source. The drilling emissions may be above expectation, while ice management vessel use might be below expectation. The emissions defined in Tables 1 and 2 are considered to represent a reasonable maximum, and SOI is confident that it will be able to execute each drilling program within these limits. In order to demonstrate synthetic minor source status, SOI proposes a facility-wide emissions cap, tracked by fuel consumption of the largest emitters, using an equation for determination of compliance with a 245-ton-per year NO_x threshold. Diesel fuel consumption of the largest source units would be measured every day, and the equation would be tested every 30 days to demonstrate an annual emission rate within the 245-ton-per-year threshold. Since all other combustion related criteria pollutants will be well below this quantity, and they track with the combustion related NO_x emissions, no other compliance tracking will be necessary.

SOI proposes to group the sources by applicable emission factor (all Shell Kulluk main drilling engines as one group, the Vladimir Ignatjuk main propulsion engines as a second group, etc.) and calculate emissions from each group by multiplying that group's fuel consumption by the applicable source-type emission factor multiplied by the appropriate heat rates and unit conversions. There are several small sources with emissions below 4 tons per year that SOI proposes to not track but to use the drill site NO_x emission estimate as a constant in the compliance equation. SOI will then sum each source group's emissions to determine the project fleet-wide emissions running total. SOI proposes to implement fuel consumption monitoring on each project vessel on a 30-day basis to ensure that the project-wide annual NO_x emissions (for each drill site) remain less than 245 tons per drill site per year.

SOI proposes the following compliance equation for the Shell Kulluk Fleet that includes the Tor Viking II:

$$\begin{split} &K_{RICE}^{*}((F_{A1}^{*}EF_{A1}) + (F_{A2}^{*}EF_{A2}) + (F_{B1}^{*}EF_{B1}) + (F_{C1}^{*}EF_{C1}) + (F_{C2}^{*}EF_{C2}) + (F_{E1}^{*}EF_{E1})) + K_{HEAT} \\ &*((F_{A3}^{*}EF_{A3}) + (F_{B2}^{*}EF_{B2}) + (F_{C3}^{*}EF_{C3})) + 0.8 + 0.1 + 0.6 + 1.6 + 3.8 < 245 \text{ tpy} \end{split}$$

Where:

$$\begin{split} K_{RICE} &= 137,000 \; (Btu/gal) / \; 7,000 \; (Btu/hp-hr) / \; 2000 \; (lb/ton) = 0.00979 \; \; Hp-hr-ton/gal-lb \\ K_{HEAT} &= 137,000 \; (Btu/gal) / \; 1,000,000 \; (Btu/mmBtu) / \; 2,000 \; (lb/ton) \\ &= \; 0.0000685 \; mmBtu-ton/gal-lb \end{split}$$

Fi = fuel consumption per source group (i)

Efi = emission factor per source group (i)

0.8	= Shell Kulluk remaining emissions (tons)
0.1	= Vladimir Incinerator (tons)
0.6	= Tor Viking II remaining emissions (tons)
1.6	= Jim Kilabuk emissions (tons)
3.8	= Shell Kulluk OSR Fleet remaining emissions (tons)

Table 5: Shell Kulluk Project ORL Variables with Tor Viking II

	Vessel Source	NO _x Emission Factor
Source Group	Identification	(EF)
Kulluk main drilling engines	A1	0.0156 lb/hp-hr
Kulluk deck crane engines	A2	0.031 lb/hp-hr
Kulluk boilers/hot water heaters	A3	0.143 lb/mmBtu
VI main propulsion engines/generators	B1	0.024 lb/hp-hr
VI boiler/hot water heater	B2	0.143 lb/mmBtu
TV main propulsion engines/generators (father engines)	C1	0.0057 lb/hp-hr
TV main propulsion engines/generators (son engines)	C2	0.0046 lb/hp-hr
TV boiler	C3	0.143 lb/mmBtu
Kulluk OSR Fleet – OSRV generator	E1	0.0151 lb/hp-hr

SOI proposes the following compliance equation for the Shell Kulluk Fleet that includes the Nordica/Fennica:

$$\begin{split} &K_{RICE}^{*}((F_{A1}^{*}EF_{A1}) + (F_{A2}^{*}EF_{A2}) + (F_{B1}^{*}EF_{B1}) + (F_{C1}^{*}EF_{C1}) + (F_{E1}^{*}EF_{E1})) + K_{HEAT}^{*}((F_{A3}^{*}EF_{A3}) \\ &+ (F_{B2}^{*}EF_{B2}) + (F_{C2}^{*}EF_{C2})) + 0.6 + 0.1 + 1.2 + 2.8 < 245 \text{ tpy} \end{split}$$

Where:

 $K_{RICE} = 137,000 (Btu/gal) / 7,000 (Btu/hp-hr) / 2000 (lb/ton) = 0.00979 Hp-hr-ton/gal-lb$

 $K_{HEAT} = 137,000 (Btu/gal)/1,000,000 (Btu/mmBtu)/2,000 (lb/ton)$

- = 0.0000685 mmBtu-ton/gal-lb
- Fi = fuel consumption per source group (i)

Efi = emission factor per source group (i)

- 0.6 = Shell Kulluk remaining emissions (tons)
- 0.1 = Vladimir Incinerator (tons)
- 1.2 = Jim Kilabuk emissions (tons)
- 2.8 = Shell Kulluk OSR Fleet remaining emissions (tons)

Source Group	Vessel Source Identification	NO _x Emission Factor (EF)
Kulluk main drilling engines	A1	0.0156 lb/hp-hr
Kulluk deck crane engines	A2	0.031 lb/hp-hr
Kulluk boilers/hot water heaters	A3	0.143 lb/mmBtu
VI main propulsion engines/generators	B1	0.024 lb/hp-hr
VI boiler/hot water heater	B2	0.143 lb/mmBtu
N/F four main propulsion engines	C1	0.0189 lb/hp-hr
F/N two boilers	C2	0.143 lb/mmBtu
Kulluk OSR Fleet – OSRV generator	E1	0.0151 lb/hp-hr

Table 6: Shell Kulluk Project ORL Variables with Nordica/Fennica

SOI has included vessel diesel fuel monitoring and resulting emission calculation as an ORL in the permit application forms in Appendix C. The applicable NO_x emission factors are included in Tables 5 and 6. An example calculation of the compliance equation from fuel consumption is presented in Appendix B.

SOI proposes to begin fuel consumption monitoring and record-keeping once the Shell Kulluk and the icebreaker vessels are on OCS waters and within 25 miles of the project drilling site. SOI will also begin fuel consumption monitoring and record-keeping for the re-supply vessel and the OSR fleet vessels once these vessels are on OCS waters and within 25 miles of the project drilling site.

SECTION 3 REGULATORY APPLICABILITY

This section provides the applicable regulatory administrative history prior to the submittal of this application, a description on the EPA's guidance in permitting this project, a brief discussion on the Notice of Intent requirements contained in 40 CFR Part 55, the roles of the respective regulatory agencies (EPA and ADEC), and a discussion of the Corresponding Onshore Area (COA) air quality designation, and applicable federal and state regulatory requirements.

3.1 EPA Guidance and 40 CFR Part 55 NOIs

SOI met with the EPA in September 2006 to discuss the air quality permitting requirements and applicable guidance documents pertaining to this project. Following this meeting the EPA confirmed that the Shell Kulluk drilling vessel, when anchored or otherwise attached to the seabed at each drill site, was a separate "stationary source." The EPA's position is consistent with the requirements of 40 CFR 55.2 whereby the Shell Kulluk becomes an OCS source once it is placed and anchored to the seabed on OCS waters. The EPA's guidance further required that the emissions from the project's associated support vessels be included in the "source" potential-to-emit (PTE) when the support vessels are within 25 miles of the anchored drilling vessel. These guidance interpretations are consistent with the OCS source definition found in 40 CFR 55.2.

SOI submitted the required Notice of Intent (NOI) for the Pre-Construction Air Permit for OCS activities (specifically a proposed 2006 Mud Line Cellar project) to the EPA on March 22, 2006. A copy of the NOI was also submitted to ADEC as required by 40 CFR 55.4(a). The EPA pursuant to 40 CFR 55.12(c)(1) and section 328(a)(1) of the Clean Air Act published a proposed Part 55 OCS Consistency Determination for ADEC's current air quality regulations (18 AAC 50 Air Quality Control as amended through December 3, 2005) in the August 22, 2006, Federal Register (V.71, No. 162, p. 48879 – 48883) to ensure that the part 55 requirements were consistent with the corresponding onshore area (COA) state of Alaska requirements. ADEC recently amended its 18 AAC 50 Air Quality Control regulations through December 14, 2006. However, ADEC made no changes to its December 3, 2005, regulations. SOI nevertheless updated its March 2006 NOI and attached it to this application in Appendix D. A second EPA consistency determination is unnecessary since the December 14, 2006, ADEC regulations were not changed from the December 3, 2005, ADEC regulations. SOI therefore believes it has satisfied all of the applicable administrative requirements pursuant to 40 CFR 55.12(f) prior to submitting this permit application.

3.2 EPA and ADEC Agency Permitting Roles

The Shell Kulluk Exploratory Drilling Program will be an exploration project conducting exploratory oil and gas drilling operations (North American Industry Classification System [NAICS] code 211111 Crude Petroleum and Natural Gas Extraction) on SOI's oil and gas lease-

holdings located on federal OCS waters on the Beaufort Sea. SOI's OCS lease blocks are located between longitude 141 degrees W to longitude 155 degrees W. SOI's lease holdings are located outside the jurisdiction of the state of Alaska's three-mile seaward boundary but are within 25 miles of Alaska's seaward boundary. Therefore, the project is subject to the requirements of 40 CFR Part 55 with the U.S. EPA as the regulatory approval agency. 40 CFR 55.1 requires the EPA to review and approve the project pursuant to the part 55 requirements including the corresponding onshore area (COA) (Alaska) requirements in 40 CFR 55.14 and 18 AAC 50. ADEC has no direct regulatory authority over the review and approval of this application and thus will serve as an interested member of the public. The EPA may of course confer with ADEC with potential interpretation issues pertaining to the applicable COA regulatory requirements.

3.3 Synthetic Minor Source Permitting

SOI intends to operate (and permit) the Shell Kulluk and its associated support vessels as a synthetic minor source that will not exceed 250 tons of any new source review regulated air contaminant per drilling site per year. The project's primary air contaminant is nitrogen oxides (NO_2) with lesser quantities of carbon monoxide (CO), small-diameter particulate matter (PM_{10}) , volatile organic compounds (VOC), and sulfur dioxide (SO_2) . SOI will seek federally enforceable requirements to ensure that the project retains a minor source permit status. It is SOI's intent that the ORL described in Section 2.3 above will satisfy the federal enforceability requirement.

3.4 Area Designation

The Outer Continental Shelf (OCS) permitting requirements of 40 CFR Part 55.14 require that a permit application address the Corresponding Onshore Area (COA) requirements, which for the Shell Kulluk Exploratory Drilling Program are the ADEC requirements for the Northern Alaska Intrastate Air Quality Control Region (AQCR) 9. This region is designated attainment or unclassifiable for all criteria pollutants pursuant to 40 CFR 81.302. This area is designated as a Prevention of Significant Deterioration (PSD) Class II Area per 18 AAC 50.015. There are no Class I areas within 300 kilometers of the project location. The nearest Class I area (Denali National Park) is located approximately 700 kilometers to the south of the project location.

3.5 State Requirements Applicable to OCS Sources

Pursuant to 40 CFR 55.14(e), the applicable state of Alaska (the COA) requirements have been promulgated by the EPA as being applicable to the Shell Kulluk project. The following describes the Alaska Administrative Code (AAC) emissions standards and limitations of ADEC that are applicable to the Shell Kulluk Exploratory Drilling Program's air emission sources. The relevant portions of ADEC's permit application forms have been completed and provided in Appendix C. The ambient air quality analysis, pursuant to 18 AAC 50.540(c)(2)(B) is presented in Section 4.

The following ADEC emissions standards and limitations apply to industrial processing and fuel burning equipment on the Shell Kulluk drilling vessel:

- Visible emissions, excluding condensed water vapor, from each stationary IC engine and each boiler, may not reduce visibility through the exhaust effluent by greater than 20 percent averaged over any six consecutive minutes, per 18 AAC 50.055(a)(1).
- Particulate matter emitted from each stationary IC engine and each boiler may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains, per 18 AAC 50.055(b)(1).
- Sulfur-compound emissions, expressed as sulfur dioxide, from each stationary IC engine and each boiler, may not exceed 500 ppm averaged over a period of three hours, per 18 AAC 50.055(c).

SOI proposes to limit the Shell Kulluk Exploratory Drilling Program emissions to less than 250 tons per drill site per year by limiting the project's diesel fuel consumption by the owner requested limit (ORL), per 18 AAC 50.540(j), and described in Section 2.3.

3.6 Federal Requirements Applicable to OCS Sources

The federal requirements pursuant to 40 CFR 55.13 have been promulgated by the EPA as being applicable to the Shell Kulluk project. This section addresses the requirements of New Source Performance Standards (NSPS), Prevention of Significant Deterioration (PSD), and Hazardous Air Pollutants (HAPs) pursuant to 40 CFR 55.13(c), (d) and (e).

New Source Performance Standards (NSPS): With the possible exception of NSPS Subpart CCCC Standards of Performance for Commercial and Industrial Solid Waste Incineration Units for Which Construction Is Commenced After November 30, 1999, or for Which Modification or Reconstruction Is Commenced on or After June 1, 2001; the Shell Kulluk drilling vessel and its associated support vessels are not subject to any 40 CFR Part 60 NSPS. The Shell Kulluk Exploratory Drilling Program vessel incinerators due to their small size (less than 35 tons per day of municipal solid waste) are exempt from federal requirements aside from an initial notification to the EPA administrator and quarterly record-keeping of the waste material burned. 40 CFR 60.2020 (NSPS Subpart CCCC) requirements apply to the project incinerator(s) that commenced construction after November 30, 1999, whereas federal requirements 40 CFR 62.14525 apply to the project incinerator(s) that commenced construction before November 30, 1999.

Prevention of Significant Deterioration (PSD): The applicable potential emissions threshold under the PSD requirements of 40 CFR 52.21 for the construction of a new source is 250 tons per year for each pollutant. SOI proposes to limit the Shell Kulluk Exploratory Drilling Program potential emissions to less than 250 tons per drill site per year (for each pollutant) so that the Shell Kulluk drilling vessel and its associated support vessels are not subject to review under the PSD rules. Emission calculations are provided in Appendix B. The requested limitation on the project's fuel use is provided on ADEC permit forms in Appendix C and is discussed in Section 2.3 of this application.

National Emission Standards for Hazardous Air Pollutants (NESHAPs) and National Emission Standards for Hazardous Air Pollutants for Source Categories - Maximum Achievable Control Technology (MACT) Requirements: The Shell Kulluk Exploratory Drilling Program and its combustion sources are not subject to a national emissions standard for hazardous air pollutants of 40 CFR Part 61 and are not subject to a national emissions standard for hazardous air pollutants for source categories under 40 CFR Part 63, subparts A, and C through to the end. The calculations provided in Appendix B show that the Shell Kulluk Exploratory Drilling Program combined vessel fleet potential emissions of each hazardous air pollutant is less than 10 tons per year, and the aggregate of all hazardous air pollutant emissions is less than 25 tons per, and thus it is not a major source of HAPs and therefore not subject to the control technology determination requirements of 40 CFR 63 Subpart B.

SECTION 4 AMBIENT IMPACT ANALYSIS (DISPERSION MODELING)

This section describes the ambient standards to be addressed for the exploration drilling activities, the model selected for use in addressing these standards, and the selection of inputs to the model in a manner believed to be consistent with acceptable EPA and ADEC modeling methods.

The Outer Continental Shelf (OCS) permitting requirements of 40 CFR Part 55.14 require that a permit application address the Corresponding Onshore Area (COA) requirements, which for the project are the ADEC requirements for the Northern Alaska Intrastate Air Quality Control Region (AQCR) 9. This AQCR is unclassifiable/in attainment for all pollutants. In addition, there are no Class I areas within 300 kilometers of the project location.

Thus, expected impacts from the exploration drilling activities were evaluated in relation to the National Ambient Air Quality Standards (NAAQS) and Alaska Ambient Air Quality Standards (AAAQS). Because this project is a temporary minor source, it would not consume increment under ADEC's rules. Therefore, the impacts are not compared with the Class II PSD increments.

Emissions from the project will not exceed the 250-ton-per-year Prevention of Significant Deterioration (PSD) major source review threshold. However, because the project is considered a portable oil and gas operation by the ADEC, a minor permit is required per ADEC Regulation 18 AAC 50.502(c)(2)(A). As a result, a National Ambient Air Quality Standards (NAAQS) modeling analysis for SO₂, NO_x, and PM₁₀ is required per ADEC Regulation 18 AAC 50.540(c)(2)(B). For the impact analysis, emissions from the stationary source (the Kulluk) and the mobile sources (i.e., icebreakers, oil spill response vessels, and a re-supply vessel) were modeled for impact.

4.1 Source Characterization

SOI has defined the worst-case modeling impact scenario as the Shell Kulluk drill rig operating at maximum emissions. During maximum Shell Kulluk operations, impacts from the OSR fleet and the Jim Kilabuk re-supply vessel both operating adjacent to the Shell Kulluk are considered. In addition, primary and secondary icebreaker impacts are also included. The icebreakers are assumed to operate at their maximum capacities in heavy ice (worst-case emissions), and their impacts are calculated at the Shell Kulluk's point of maximum impact. The emissions from propulsion engines on the Shell Kulluk and the Jim Kilabuk are not considered in the assessment, since these propulsion engines will be used very briefly to maneuver the Shell Kulluk when it is being anchored or to maneuver the Jim Kilabuk when it is near the Shell Kulluk drill rig. The propulsion engines will not be operated concurrently with the drill rig and support vessels when they are operating at maximum emissions levels.

SOI has estimated the duration at a given drill site is expected to be less than 60 days. Even though the Shell Kulluk Exploratory Drilling Program will be permitted as a minor source and does not trigger PSD requirements, the modeling analysis conservatively considers sources operating 24 hours per day and 60 days per year. These assumptions combined with the use of the conservative SCREEN3 model (which incorporates worst-case assumptions) are expected to greatly overestimate real-world impacts from the project.

Shell Kulluk Drill Rig

For modeling, some sources on the Shell Kulluk were merged together because of size and location considerations. Many identical sources/stacks are located near each other and were collocated so that single-source stack parameters were used with combined emissions. The locations of the collocated stacks were conservatively placed at the actual stack location nearest the ambient air boundary.

The following sources on the Shell Kulluk were collocated: two main engines (stack #1), two air compressors (stack #2), two HPP engines (stack #3), and three deck cranes (stack #4). The boiler used for space heating emits to the atmosphere via a single stack (stack #5). Emissions from the small 2.4 mmBTU hot water heater were added to the boiler emissions (stack #5) because the boiler has low dispersion characteristics compared with the other sources. A logging winch also emits to the atmosphere via a single stack (stack #6). These six stacks were considered as point sources in the modeling analysis.

The two main engine stacks (stack #1) and boiler stack (stack #5) emit horizontally. These stacks were modeled in accordance with ADEC's recommendations. ADEC's recommended adjustments provide for the retention of buoyancy while addressing the impediment to the vertical momentum of the release. The following procedure was utilized to model horizontally emitting stacks:

- Set the actual stack velocity (V_{actual}) to an adjusted stack exit velocity (V_{adjusted}) of 0.001 meters per second.
- To conserve volumetric flow, determine an adjusted stack diameter (D_{adjusted}) by adjusting the actual stack inside diameter (D_{actual}) to account for buoyancy of the plume by using the following equation:

 $D_{adjusted} = 31.6(D_{actual})(V_{actual})^{0.5}$

• Use the adjusted parameters, V_{adjusted} and D_{adjusted}, in the modeling analysis.

The physical characteristics of the stacks on the Shell Kulluk are provided in Table 7. Photographs and diagrams of the Kulluk are provided in Appendix A.

Table 7:	Shell Kulluk Source	Stack Parameters
----------	---------------------	------------------

	Model	Source	Vertical or	Relea	se Ht. 1	Stack	Dia.	Exit	Temp.	Exit Vel.
Source Description	Source ID	Туре	Horizontal?	(ft)	(m)	(ft)	(m)	(deg F)	(deg K)	(m/s)
Stack #1: 2 Main Engines A	MAINENGS	Point	horizontal	34.5	10.52	318.6	97.1	750	672	0.001
Stack #2: 2 Air Compressors	COMPENGS	Point	vertical	8.0	2.44	0.69	0.21	800	700	40.0
Stack #3: 2 HPP Engines	HPPENGS	Point	vertical	8.0	2.44	0.60	0.18	800	700	40.0
Stack #4: 3 Crane Engines	DECKCRNS	Point	vertical	50.0	15.24	0.83	0.25	750	672	20.1
Stack #5: 1 Boiler / 1 Water Heater ^B	BOILHEAT	Point	horizontal	28.0	8.53	62.4	19.0	200	366	0.001
Stack #6: 1 Logging Winch	LOGWNCH	Point	vertical	10.3	3.12	0.33	0.10	820	711	53.0

^A Diameter and exit velocity is adjusted since stacks emit horizontally.

Non-adjusted stack diameter is 1.67 feet (0.51 meters) and non-adjusted exit velocity is 36.6 m/sec.

^B Diameter and exit velocity are adjusted since stacks emit horizontally.

Non-adjusted stack diameter is 0.5 feet (0.15 meters) and non-adjusted exit velocity is 16.1 m/sec.

¹ Above main deck that is approximately 7.3 meters (24 feet) above the water surface.

The configuration of the sources on the Shell Kulluk deck is shown on Figure 2.

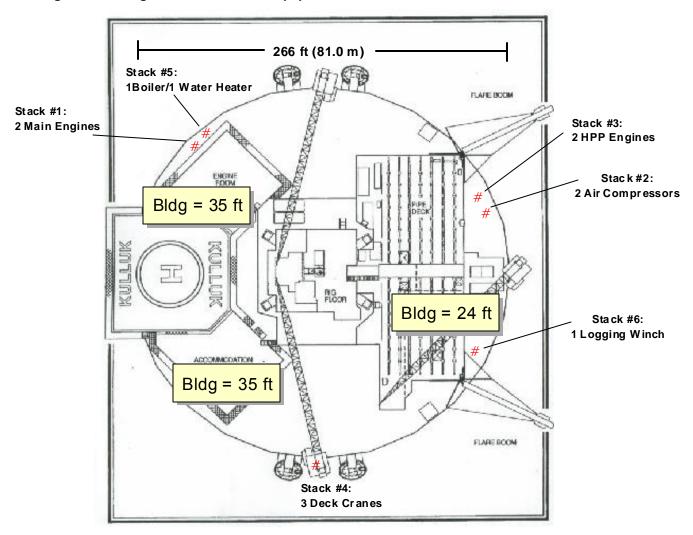
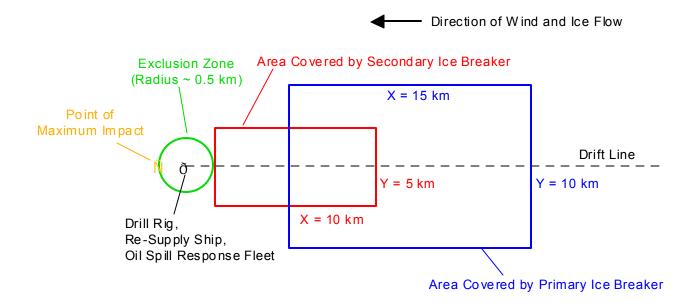


Figure 2: Configuration of Platform Equipment


Given the configuration of the stacks and structures on the Shell Kulluk, it is expected that the plumes will be down-washed and pulled into the wake of the Shell Kulluk. In SCREEN3, the dimensions of buildings in proximity to the stacks are needed to simulate building downwash. For this analysis, the "building" length and width are assumed to be the length and width of the Shell Kulluk. For sources located near the engine building, the building height is assumed to be the highest point of the engine room building (35 feet above main deck). For sources located near the pipe deck, the building height is assumed to be the highest point of the pipe deck structure (24 feet above main deck).

Shell Kulluk Support Vessels

The OSR vessels assigned to the rig will stay very close to the rig at all times. Periodically, the workboats will do response exercises, but it is not expected that any of the OSR vessels will travel

more than 2 miles away from the rig. To be conservative, the OSR vessels are considered adjacent to the drill rig in the modeling assessment. In addition, the Jim Kilabuk re-supply vessel is also assumed to be considered adjacent to the drill rig. For the Jim Kilabuk, emissions from the two main engines and a generator are considered for modeling. The emissions from the Bow Thruster Diesel engine (propulsion engine) are not considered in the assessment, since the propulsions engines will be used very briefly to maneuver the Kilabuk near the drill rig. For the project, maximum emissions of any pollutant for the propulsion engines on the Jim Kilabuk will be approximately 1.5 tons of NO_x per year and less than 0.1 tons per year of either PM₁₀ or SO₂.

Figure 3 displays the configuration of the worst-case modeling scenario for the drill rig and associated support vessels.

Figure 3: Modeling Configuration for Drill Rig and Support Vessels

For the worst-case modeling scenario, the primary and secondary icebreakers are assumed to be operating in heavy ice, which results in maximum emissions from these vessels. The distance the icebreakers operate from the drill rig is variable based on the character of the ice, the drift rate of the ice, and the weather forecast/conditions. In general, the icebreakers will break ice directly upstream from the drill rig. The line directly upstream from the drill rig is called the drift line.

The primary icebreaker (Vladimir Ignatjuk) will range from approximately 5 km to 20 km upstream from the drill rig. The primary icebreaker will move back and forth perpendicular to the drift line approximately 5 km either side of the drift line to the rig. The secondary icebreaker will range from the buoy pattern of the drill rig up to 10 km upstream of the rig. The secondary ice breaker will move back and forth perpendicular to the drift line approximately 2.5 km either

side of the drift line to the rig. Secondary ice management for the Kulluk will be performed by the Tor Viking II in 2007 and possibly for 2008 and 2009. SOI may replace the Tor Viking II with either the Nordica or Fennica for 2008 and 2009 secondary ice management activity. The Nordica/Fennica was conservatively considered in the modeling analysis since these vessels have higher emissions than the Tor Viking II.

The icebreakers are constantly moving to break ice upstream of the drill rig. To account for the movement of the icebreakers, the sources were modeled as elevated area sources rather than point sources. Each icebreaker was initially modeled as a point source to account for mechanical and buoyant lift from the ship's stacks. The final plume rise for the icebreakers was determined, and the emissions from each icebreaker were then modeled as an elevated area source (based on the final plume heights) covering the ice management areas for each icebreaker.

For the support vessels, stack heights were estimated from photographs and ship diagrams. Other stack parameters were determined using ship-specific information, engineering judgment, and data for comparable sources. Emissions from each ship are assumed to be released to the atmosphere via a single stack.

The physical characteristics of the stacks on the support vessels are provided in Table 8. Photographs and diagrams of the support vessels are provided in Appendix A.

Table 8: Support Vessel Source Stack Parameters

	Model Source	Source		Releas	Release Ht. 1		Stack Dia.		Exit Temp.	
Source Description	ID	Туре	Ship Type	(ft)	(m)	(ft)	(m)	(deg F)	(deg K)	(m/s)
Vladimir Ignatjuk ^{3, 4}	VLADIMIR/VLAD_BIG	Point/Area	Primary Icebreaker	80.0	24.38	1.31	0.40	662	623	18.7
Nordica/Fennica ^{3, 5, 6}	FENNICA/FEN_SM	Point/Area	Secondary Icebreaker	105.0	32.00	0.87	0.27	572	573	36.0
Oil Response Ships - Kulluk ²	KILABUK	Point	Oil Spill Response Fleet	50.0	15.24	0.60	0.18	800	700	40.0
Jim Kilabuk - Kulluk	KILABUK	Point	Re-supply Ship	50.0	15.24	0.60	0.18	800	700	40.0

¹ Absolute height above water.

² Assume same stack parameters as the Jim Kilabuk re-supply ship.

³ These sources are constantly moving to break ice upstream of the drill rig. To account for movement of the vessels, the plume rise for each icebreaker was determined by modeling each ship as a point source. Then, the emissions for each icebreaker were modeled as an elevated area source (based on plume rise) covering the ice management area for each ship.

⁴ Vladimir Ignatjuk ice management activity covers 150,000,000 sq. meters; final plume rise used for area source release height is 57.2 meters.

⁵ Fennica/Nordica ice management activity covers 50,000,000 sq. meters; final plume rise used for area source release height is 60.9 meters.

⁶ Secondary ice management for the Kulluk will be performed by the Tor Viking II in 2007. In 2008 and 2009, the Fennica/Nordica will be used for secondary ice management activity. The Fennica/Nordica was conservatively considered in the modeling analysis since this ship has higher emissions than the Tor Viking II.

4.2 Modeled Emissions

The modeling analysis conservatively considers all emission sources operating 24 hours per day and 60 days per year even though actual durations at a given drill site will be significantly less.

Tables 9, 10, and 11 present the modeled emissions for NO_x, PM₁₀, and SO₂, respectively.

						Emissions	
	#	# Operations		Max.	1-Hour	Max. 24-Hour	Max. Annual
Source ID	Stacks	hr/day	hr/yr	(lb/hr)	(g/sec)	(g/sec)	(g/sec) 1
Drill Rig: Shell Kulluk							
Stack #1: 2 Main Engines	1	24	1,440	87.86	1.11E+01	1.11E+01	1.82E+00
Stack #2: 2 Air Compressors	1	24	1,440	6.58	8.29E-01	8.29E-01	1.36E-01
Stack #3: 2 HPP Engines	1	24	1,440	15.50	1.95E+00	1.95E+00	3.21E-01
Stack #4: 3 Crane Engines	1	24	1,440	31.62	3.98E+00	3.98E+00	6.55E-01
Stack #5: 1 Boiler/1 Water Heater	1	24	1,440	0.42	5.30E-02	5.30E-02	8.71E-03
Stack #6: 1 Logging Winch	1	24	1,440	4.34	5.47E-01	5.47E-01	8.99E-02
Support Vessels: Shell Kulluk Fleet							
Vladimir Ignatjuk	1	24	1,440	591.66	7.45E+01	7.45E+01	1.23E+01
Fennica/Nordica	1	24	1,440	523.07	6.59E+01	6.59E+01	1.08E+01
Oil Response Ships - Kulluk	1	24	1,440	202.23	2.55E+01	2.55E+01	4.19E+00
Jim Kilabuk - Kulluk	1	24	1,440	181.85	2.29E+01	2.29E+01	3.77E+00

Table 9: Modeled NO_x Emissions

¹ Emission rate (in g/s) for annual periods is adjusted to account for a maximum of 60 days each drill site.

Table 10: Modeled PM₁₀ Emissions

						Emissions		
	#	# Operations		Max. 1-Hour		Max. 24-Hour	Max. Annual	
Source ID	Stacks	hr/day	hr/yr	(lb/hr)	(g∕sec)	(g∕sec)	(g/sec) 1	
Drill Rig: Shell Kulluk								
Stack #1: 2 Main Engines	1	24	1,440	3.97	5.00E-01	5.00E-01	8.22E-02	
Stack #2: 2 Air Compressors	1	24	1,440	0.33	4.15E-02	4.15E-02	6.81E-03	
Stack #3: 2 HPP Engines	1	24	1,440	1.10	1.39E-01	1.39E-01	2.28E-02	
Stack #4: 3 Crane Engines	1	24	1,440	2.24	2.83E-01	2.83E-01	4.65E-02	
Stack #5: 1 Boiler/1 Water Heater	1	24	1,440	0.07	8.74E-03	8.74E-03	1.44E-03	
Stack #6: 1 Logging Winch	1	24	1,440	0.31	3.88E-02	3.88E-02	6.38E-03	
Support Vessels: Shell Kulluk Fleet								
Vladimir Ignatjuk	1	24	1,440	11.10	1.40E+00	1.40E+00	2.30E-01	
Fennica/Nordica	1	24	1,440	11.27	1.42E+00	1.42E+00	2.34E-01	
Oil Response Ships - Kulluk	1	24	1,440	5.21	6.57E-01	6.57E-01	1.08E-01	
Jim Kilabuk - Kulluk	1	24	1,440	3.53	4.45E-01	4.45E-01	7.31E-02	

 1 Emission rate (in g/s) for annual periods is adjusted to account for a maximum of 60 days each drill site.

						Emissions	
	#	Operations		Max. 1-Hour		Max. 24-Hour	Max. Annual
Source ID	Stacks	hr/day	hr/yr	(lb/hr)	(g∕sec)	(g∕sec)	(g/sec) 1
Drill Rig: Shell Kulluk							
Stack #1: 2 Main Engines	1	24	1,440	8.66	1.09E+00	1.09E+00	1.79E-01
Stack #2: 2 Air Compressors	1	24	1,440	1.54	1.94E-01	1.94E-01	3.18E-02
Stack #3: 2 HPP Engines	1	24	1,440	0.77	9.68E-02	9.68E-02	1.59E-02
Stack #4: 3 Crane Engines	1	24	1,440	1.57	1.98E-01	1.98E-01	3.25E-02
Stack #5: 1 Boiler/1 Water Heater	1	24	1,440	0.08	1.01E-02	1.01E-02	1.67E-03
Stack #6: 1 Logging Winch	1	24	1,440	0.22	2.71E-02	2.71E-02	4.46E-03
Support Vessels: Shell Kulluk Fleet	t						
Vladimir Ignatjuk	1	24	1,440	38.02	4.79E+00	4.79E+00	7.88E-01
Fennica/Nordica	1	24	1,440	34.74	4.38E+00 4.38E+00		7.20E-01
Oil Response Ships - Kulluk	1	24	1,440	18.74	2.36E+00	2.36E+00	3.88E-01
Jim Kilabuk - Kulluk	1	24	1,440	11.52	1.45E+00	1.45E+00	2.39E-01

Table 11: Modeled SO₂ Emissions

¹ Emission rate (in g/s) for annual periods is adjusted to account for a maximum of 60 days each drill site.

4.3 Model Selection

After research into the availability of meteorological data for use in modeling, it was determined that representative meteorological data meeting U.S. EPA's requirements is not available for the

project location. This issue was discussed with both ADEC and the EPA. On March 30, 2006, the EPA approved the use of the SCREEN3 model for the project. SCREEN3 is a U.S. EPA-approved model, which incorporates worst-case assumptions. As a result, modeled impacts using SCREEN3 are expected to overestimate real-world impacts from the project.

For this analysis, the most recent version of the SCREEN3 model (version 96043) was used. SCREEN3 is a steady-state, single-source, Gaussian dispersion model developed to provide an easy-to-use method of obtaining pollutant concentration estimates. SCREEN3 is a U.S EPAapproved screening model for estimating impacts at receptors located in simple terrain and complex terrain due to emissions from simple sources. The model is capable of calculating downwind ground-level concentrations due to point, area, and volume sources. In addition, SCREEN3 incorporates algorithms for the simulation of aerodynamic downwash induced by buildings. The model utilizes a range of worst-case meteorological data rather than using sitespecific meteorological conditions.

4.4 Meteorological Data

For this analysis, SCREEN3's full array of screening meteorological data was used. Screening meteorological data are the meteorological categories listed in U.S. EPA's "SCREEN3 Model User's Guide" (EPA-454/B-95-004) and as shown in Table 12. A total of 36 wind directions, at 10-degree intervals, are used. Thus, the screening meteorological file contains all combinations of meteorological conditions and wind directions. This meteorological data considers theoretical worst-case conditions regardless if these conditions will actually occur at the project locations.

	Wind Speed (m/sec)												
Stability	1	1.5	2	2.5	3	3.5	4	4.5	5	8	10	15	20
А	*	*	*	*	*								
В	*	*	*	*	*	*	*	*	*				
С	*	*	*	*	*	*	*	*	*	*	*		
D	*	*	*	*	*	*	*	*	*	*	*	*	*
Е	*	*	*	*	*	*	*	*	*				
F	*	*	*	*	*	*	*						

Table 12: Wind Speed and Stability Class Combinations Used by the SCREEN3 Model

Based on a review of the meteorological data in the vicinity of the project location, an ambient temperature of 273 K was utilized. This temperature is more representative of the project location and duration than SCREEN3's default ambient temperature of 293 K.

4.5 Background Concentrations

When comparing a project's impact to the ambient air quality standards, an ambient background concentration is needed. For the project, ADEC recommended ambient background

concentrations from BP's Arctic North Slope Eastern Region (ANSER) monitoring program, which took place east of BP's Badami facility in 1999. The data is considered representative of the SOI project locations and has been reviewed and approved by ADEC. ADEC considers this data the best available regional data set for a North Slope project located 10 to 20 km or further offshore. Table 13 presents the background concentrations for use in the modeling analysis.

	Averaging	Background
Pollutant	Period	Concentration (µg/m ³)
NO ₂	Annual	3.0
PM10	24-hour	7.9
	Annual	1.8
SO ₂	3-hour	9.8
	24-hour	7.2
	Annual	2.6

Table 13: Background Concentrations

ADEC was also consulted regarding existing industrial sources in the vicinity of the project. Because of the remote offshore location of the project, impacts from other sources are anticipated to be insignificant and are not included in the modeling assessment.

4.6 Evaluation Methodology

The SCREEN3 model can only be used to predict maximum 1-hour concentrations from a single source. When screening models are utilized for multiple sources, it is necessary to model each source separately and then add maximum impacts from each model run to determine an overall impact value. Results utilizing this methodology are expected to be conservative since the maximum impacts from each modeled source (regardless of different impact locations at different times) are summed together for a total impact value from a facility.

Conversion factors, also referred to as persistence factors, are needed to convert maximum 1-hour values to other averaging periods of concern. Table 14 presents the U.S. EPA's recommended conversion factors for SCREEN3.

Desired Averaging Period										
Model Output	1-hr	3-hr	8-hr	24-hr	Month	Quarter	Annual			
Simple Terrain	1	0.9	0.7	0.4	0.18	0.13	0.08			

Table 14: Conversion Factors for Screen3 Modeling

The maximum short-term emissions (i.e. maximum hourly and maximum daily emissions) from the project were compared to the short-term ambient air quality standards. Annual impacts consider the totality of emissions over 60-day project duration. Because emissions used in the analysis are based on a 60-day operating period, the annual emissions from the project are distributed over 60 days (rather than 365) and a factor of 0.1644 (60 days/365 days) is applied to annualize the subsequent impacts.

SCREEN3 modeling was performed using a methodology referred to as X/Q, which assumes that concentration impacts (X) are proportional to the emissions (Q) from a source. Under this approach, each collocated source was modeled with a 1 gram/second emission rate. The resulting X/Q impacts were converted to appropriate averaging times using the factors in Table 10 and then multiplied by the actual emission rate of each pollutant to determine a modeled impact.

Flat terrain and rural dispersion coefficients and were used in the modeling analysis. For the SCREEN3 modeling analysis, it was assumed that the ambient air boundary for the Kulluk is a 500-meter safety exclusion zone measured from the side of the Kulluk. SOI expects to obtain a 500-meter radius Safety Exclusion Zone (SEZ) from the United States Coast Guard by March or April 2007. A copy of the SEZ Application will be submitted to EPA under a separate cover. SOI will implement institutional controls to maintain the SEZ. Such controls will include buoys marking the SEZ and anchor chains, and using shipboard and on-shore communication systems and support vessels to patrol the SEZ to keep unauthorized persons at a safe distance away from the Kulluk drilling vessel.

The calculations and modeled impacts associated with this modeling analysis are provided in Appendix E.

4.7 Modeling Results

Table 15 summarizes the results of the SCREEN3 modeling analysis. Based on the modeling analysis results in Table 15, the predicted impacts from the SOI project comply with the National Ambient Air Quality Standards.

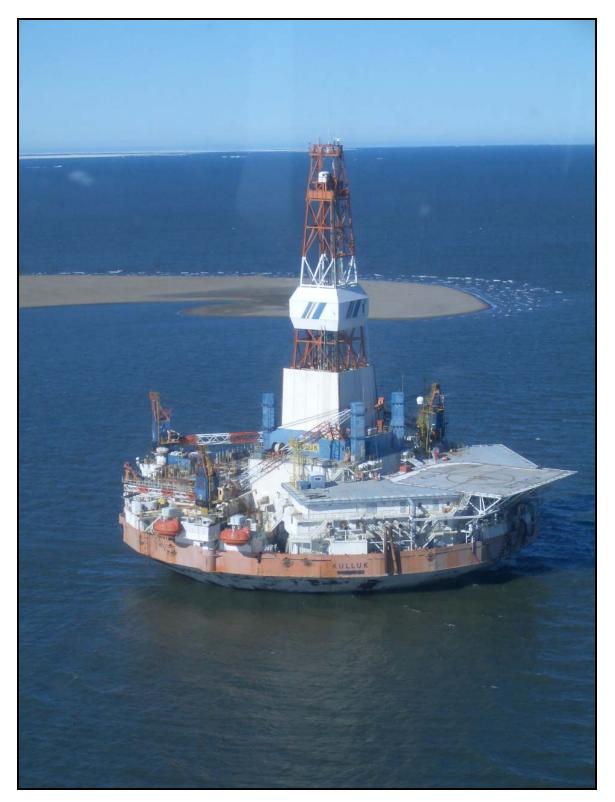

	Averaging		Concentration	(µg∕m³)	NAAQS			
Pollutant	Period	Max. Kulluk	Max. Vessels	Background	Total	(µg∕m³)	Comply?	
NO ₂ A	Annual	25.3	28.1	3.0	56.5	100	Yes	
PM10	24-hour	63.0	25.9	7.9	96.8	150	Yes	
	Annual	2.1	0.9	1.8	4.7	50	Yes	
SO ₂	3-hour	192.2	201.1	9.8	403.1	1,300	Yes	
	24-hour	85.4	89.4	7.2	182.0	365	Yes	
	Annual	2.8	2.9	2.6	8.3	80	Yes	

Table 15: Modeling Analysis Results

^A Assume that all $NO_2 = NOx * 0.75$.

APPENDIX A Drawings and Photographs

Shell Kulluk

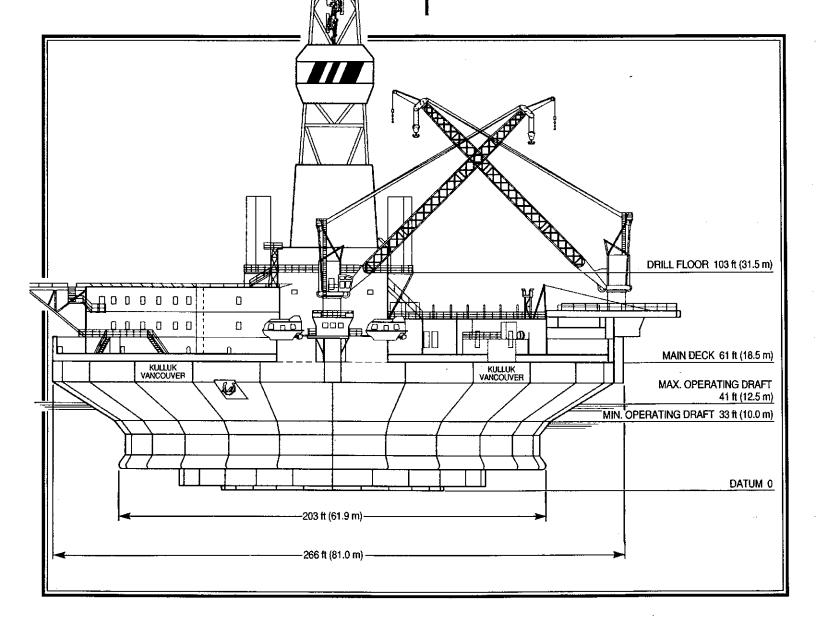
Vladimir Ignatjuk (formerly named Arctic Kalvik)

Tor Viking II

Fennica/Nordica

Jim Kilabuk

Supporting Information – Shell Kulluk



Kulluk is the first floating drilling vessel designed and constructed for extended season drilling operations in deep Arctic waters.

An improvement on the floating drillship concept, Kulluk is a conically shaped, ice strengthened floating drilling unit with a 24-faceted double-walled hull.

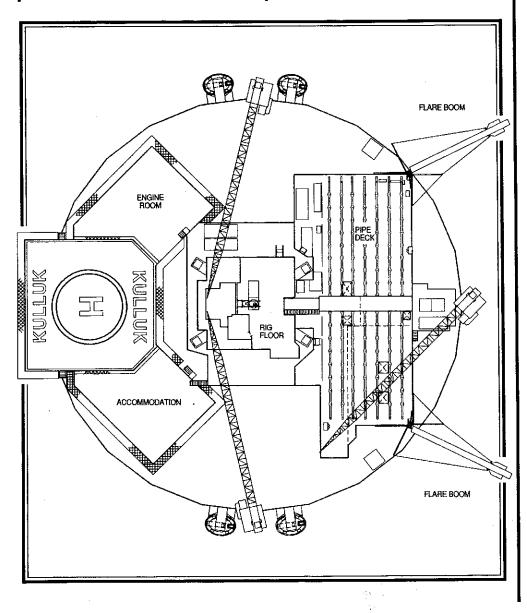
Key Features

- Unique, purpose-built conical Arctic Class IV hull design
- Operating water depth 60 to 600 ft (18.3 to 183 m), drilling depth up to 20,000 ft (6 096 m)
- Electrically driven Varco top drive drilling system
- 24 ft (7.3 m) diameter glory hole bit capable of drilling and setting a steel caisson 40 ft (12.2 m) into the seabed for ice scour protection
- Partially enclosed derrick
- 18³/4 in (476 mm), 10,000 & 15,000 psi (69 & 103 MPa) BOP stacks
- High-performance 12 point mooring system
- Permanently installed 10,000 bbl/day (1 590 m³/day)
 3-phase testing system

Classification

The unit has been designated as Arctic Class IV (by the Canadian Coast Guard) under Canadian Arctic Shipping Pollution Prevention Regulations, and as Ice Class 1AA by the American Bureau of Shipping.

Specifications


Owner:	BeauDril Limited
Flag:	Canadian
Rig Type:	Conical Drilling Unit
0.11	(CDU)
Delivered:	1983
Rig Design:	Earl & Wright -
0 0	Lavalin
Built By:	Mitsui Engineering
•	and Shipbuilding,
	Japan

Dimensions

Diameter at	
main deck:	266 ft (81.0 m)
Diameter at	
pump deck:	196 ft (59.7 m)
Hull Depth:	61 ft (18.5 m)

Operations

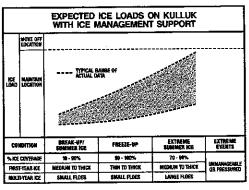
Draft	
(max. operating):	41 ft (12.5 m)
Draft	
(min. operating):	33 ft (10.0 m)
Draft (light ship):	26 ft (8.0 m)
Light Ship	
Displacement:	19,300 tons
^	(17 510 tonnes)
Maximum	
Drilling Depth:	20,000 ft (6 0 <u>96 m)</u>
Operating	
Water Depth:	60 to 600 ft
	(18.3 to 183 m)

Weight 17,000 tons

Variable Load

7,717 tons (7 000 tonnes)

Storage Capacities


Barite &	
cement bulk:	21,4 <u>71 cf (608 m³)</u>
Liquid mud:	2,605 bbl (414 m ³)
Drill water:	4,227 bbl (672 m ³)
Fuel:	10,085 bbl (1 603 m ³)
Potable water:	1,961 bbl (312 m ³)
Ballast:	35,928 bbl (5 712 m ³)
Pipe & casing	
(pipe deck):	1,543 tons
* *	(1 400 tonnes)
Brine:	2,010 bbl (320 m ³)

Operational Limits

Stationkeeping Conditions

Kulluk was built to operate in the ice infested waters of the Arctic offshore. The unit was developed to extend the drilling season available to more conventional floating vessels by enabling operations to be carried out through spring breakup conditions, the summer months, and well into the early winter period.

Kulluk was designed to maintain location in a drilling mode in moving firstyear ice of 4 ft (1.2 m) thickness. With ice management support provided by BeauDril's Arctic Class IV icebreakers, the unit can maintain location in more severe conditions as shown below.

In terms of Kulluk's open water performance, the drilling unit was designed to maintain location in storm conditions associated with maximum wave heights of 18 ft (5.5 m) while drilling and 40 ft (12.2 m) while disconnected (assumed storm duration of 24 hrs).

If ice or open water storm conditions become more severe than those indicated, the unit's mooring system, which incorporates acoustic release devices, is disconnected from the anchors and the unit moves off location.

SHELL OFFSHORE INC.

ARCTIC FLOATING DRILLING PLATFORM

SHELL KULLUK

Builder

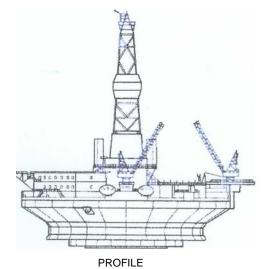
Owner Managing Company Designers Mitsui Engineering & Shipbuilding Co. Ltd Tamano Works, Japan Hull No. F 564 Shell Offshore Inc. Frontier Drilling Earl and Wright-Lavalin

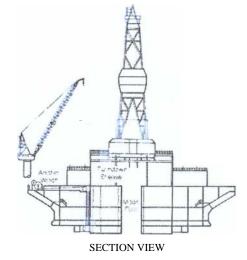
PRINCIPAL DIMENSIONS

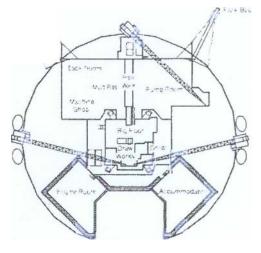
Radius @ main	0110	
deck	133 ft.	(40.50 m)
Radius @ pump deck	98 ft.	(29.85 m)
Hull depth	60.69 ft.	(18.50 m)
Water depth	60-600 ft.	(25-183 m)
Lightship weight	18,386 Tons	(18,681 tonnes)
Maximum		
allowable		
variable deck load		(7,000 tonnes)
Gross Tonnage	28,686.5 Tons ((29,147 tonnes)
Regular Tonnage	24,249.7 Tons ((24,639 tonnes)
STORAGE CAPACITY		
KC1 brine	2,012 bbls	(319 m3)
Bulk cement and		
barite (13 silos)	21,478 ft3	(608 m3)
Liquid mud	2,589 bbls	(411 m3)
Fuel	9,995 bbls	(1,603 m3)
Casing and drill pipe	1,543 Tons	(1,400 tonnes)
Potable water	1,961 bbls	(311 m3)
Drill water	4,227 bbls	(672 m3)
POWER PLANT		
Engines	Three electric n	notive diesel
e	Rated at 2100 k	W each
Emergency power	One Cullen Det	roit, 650 W
ANCHOR SYSTEM		
Mooring system	1220,000 kt 19.'	7 Tons
	(20 tonnes) anch	
	Twelve point sy	stem with
	acoustic quick r	elease devices
	on all twelve lin	
	Hepburn electric	
	winches, each d	•
	Model 752-AR	
	brake holding of	t 408.4 Tons
	(415 tonnes).	

The mooring lines 3 1/2 inches (89 mm) x 3,763 ft. (1147 mm) pass through.

Hepburn swivel-type wire fair leads (underside of hull) over fixed tension monitoring fairleads (topside of hull). Variety of Bruce/Stevpris and LWT anchors from 9 Tons to 20 Tons.


MAJOR DRILLING EQUIPMENT


160 ft. high, 40 ft. x 40 ft.
(48.7 m high, 12.19 x 12.19 m)
base 625 Tons (635 tonnes)
capacity.
Ideco E3000 with three GE
motors rated at 940 kWeach
Varco TDS-3
Ideco LR 49549.5"
(1257 mm)
NL Rucker model
18/400, 178.5 Tons
(181.4 tonnes) 18ft.
(5.5 m) travel
Two Ideco T 1600 triplex Four
Thule VSM-120 shakers: One
Brandt SR3 desander and one SE
24 desilter: Wagna Sigma 100
centrifuge: Thule VSM-200 mud
cleaner: AlfaLaval AX30 mud
cooler. ~ Dowell Dr-600 R717J
22,639 ft. (6900 m) 5" Grades E,
G and S drill pipes.


BOP Equipment	One NL Shaffer 10M, 18 3/4" (476.24 mm) BOP stack	Riser Tensioner	Western Gear 4 @ 80,000 lbs (35.700 daN) capacity each
	with two annular and four ram type preventers.	Guide Line System	Western Gear 4 @ 16,000 lbs (1717 daN)
	10,000 psi (69 mPa).		(1/1/ dain)
	One NL Shaffer 15M, 18 3/4"	AUXILIARY EQUIPMEN	Т
	(476.25 mm)	Cranes	Three Liebherr 805/8500
	BOP: stack with two annual preventers 15,000 psi		64 Tons (65 tonnes) @ 32 ft. (9.7 m) radius
	(103 Mpa) and four ram type	Forklift	Toyota electric
	preventers 14,854 psi (102 Mpa)	Reposition	Honeywell RS 904
Risers	600 ft. (184 m) 21" (533 mm)	SPECIAL FEATURES	Ice
	riser complete with slip joint and ball joint. One complete 30" (762 mm) riser system	Standards	Built to Canadian Arctic Shipping Pollution Prevention Act Class IV
	complete with pin-connector and ball joints.	30" (27" ID)	Built to negate the need to underream in the 26" hole
Diverters	One Regan KFDS 24"	Helideck	section Suitable for Sikorski S-6l or
	(610 mm) One Regan KFDS 27.9"	Hendeek	similar plus fuelling station
	(711 mm)	Accommodations	Quarters for 108 persons 4-bed
BOP Controls	NL Shaffer with 100 gal fluid reservoir (378.5 L)		hospital, recreation areas.

SHELL KULLUK

GENERAL ARRANGEMENT OF VESSEL

PLAN VJEW

Supporting Information - Vladimir Ignatjuk

AHTS M/V " Vladimir Ignatjuk " (ex. Artic Kalvik)

Design	Canadian	
Classification	Lloyd's Register of Shipping + 1	
Built / Delivered	Lloyd's Register of Shipping 100	A1 LMC, icebreaking tow, ice class - 1A Super
DIMENSIONS		
Length Over All (LOA)	88.02 m	ft
Length between p.p	m	ft
Breath Moulded	17.51 m	ft
Depth to main deck	m	ft
Draught design	8,3 m	ft
Freeboard design	m	ft
TONNAGE		
Dead weight (DWT)	2113 Metric tonnes	
Light Ship	Metric tonnes	
Gross tonnage (GRT)	Metric tonnes	
Net tonnage (NET)	Metric tonnes	
CAPACITIES		
Dry bulk	M ³	ft ³ In four tanks
Potable water	m ³	
Drill Water - Ballast	M ³	
Oil / water based mud	m ³	Specific Gravity 2.5
Base Oil	m ³	
Fuel Oil	m ³	Marine gas oil
Urea	m ³	

Particulars believed to be correct, without guarantee

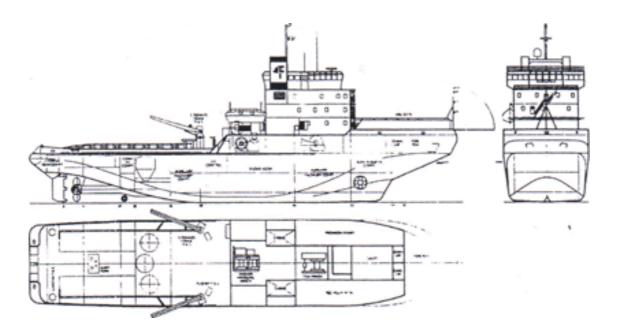
Clear Deck Area	m ²
Deck load	tonnes
	m³

DISCHARGE RATES

Dry Bulk Pot Water Drill water / Ballast Brine Oil Based Mud Base Oil Fuel Oil (Diesel) Discharge Stations Discharge Lines	
Tank Cleaning Flow Meters	
PROPULSION Main Engines Thrusters	4 x 5800 BHP. Two-shaft diesel-reduction gear engine with 4 main engines and variable-pitch propeller.GD type - 8TM410, Stork Werkspoor Diesel
Propellers Rudders	
BOLLARD PULL	
Bollard pull	202 tonnes BP continous (DnV certified) approx. 210 t max pull
SPEED / CONSUMPTION	
16 knots	Approx 42.5 tonnes /day @ 6 m. draught
12 knots	Approx 15.6 tonnes /day @ 6 m. draught
10 knots	Approx 10 tonnes /day @ 6 m. draught
TOWING ANCHORHAND	
AHT Winch	Brattvaag towing/anchorhandling winch 400 ts pull / 550 ts brake holding cap
AHT Drum	One of 1,400 mm dia. x 3,750 dia x (1,250 mm + 1,250 mm) length
Wire Capacity	2 x 1,900 m of 77 mm wire or 2 x 1,650 m of 83 mm wire
AH Drum	One of 1,400 mm dia. x 3,750 mm dia. x 3,000 mm length
Wire Capacity	4,100 m of 83 mm wire
Winch Control	TOWCON 2000 Aut. Control with printer
Pennant Reels/Caps	One off 2 x 1,500 m of 77 mm wire or 2 x 1,300 m of 83 mm wire capacity One off 3,400 m of 77 mm wire or 1 x 3,100 m of 83 mm wire capacity

Particulars believed to be correct, without guarantee

Cable Lifters	2 x 76 mm and 2 x 84 mm onboard
Chain Lockers	2 x 125 m ³ / giving abt 2 x 6,000 ft of 3 inch chain
Shark Jaws	2 pairs of Karm Forks arranged for chain up to 165 mm dia / 750 ts SWL Inserts for handling 65, 75, 85, 100, and 120 mm dia. wire/chain
Stern Roller	One of 3,5 m dia. x 6.0 m length – SWL 500 ts
Guide Pins	2 pairs of Karm Fork Hydraulic pins – SWL 170 ts
DECK EQUIPMENT	
Capstans	2 x 15 ts pull
Tugger Winches	2 x 15 ts pull
Smit Brackets	One bracket on B Deck FW – SWL 250 ts
Cranes	1 hydraulic crane on forep cargo deck giving 6 / 12 ts at 20/10 m arm (360 degr
	1 telescopic crane on aft cargo deck giving 1.5 / 3 ts at 15/10 m arm (360 degr)
	1 hydraulic crane on fore-castle deck for stores etc
Windlass	1 hydraulic windlass / mooring winch. Two de-clutchable drums 46 mm K3 chain


Accommodation

Accommodation for a total of 23 persons, including crew All accommodation equipped with air-condition and humidification facilities.

Misc.

We would like to highlight the exceptional good maneuverability of the vessel. Also please note the environmental bonus using "Tor Viking" due to her exceptional low noise level, and the installed Exhaust Gas Treatment Systems (Catalyst), effectively reducing the NOx levels. "Tor Viking" is also equipped with diesel overflow tank with alarm system. The vessels design, and her possibility for running 2 engines, ("father/son") gives a very favourable fuel consumption.

DynPos 2 - Kongsberg Simrad SDP21 system will be installed during winter 2002/03

Supporting Information – Tor Viking II

AHTS/Icebreaker Tor Viking II - Main Characteristics

Design : KMAR 808 AHTS/ ICEBREAKER (Now; MOSSMAR)

Classification :

DnV,+1A1, TUG/SUPPLY VESSEL, SF, EO, ICEBREAKER ICE-10, HELDK-SH, WI-OC DK(+), HK(2.8), DYNPOS-AUTR (DP-Green)

Built / Delivered : Havyard Leirvik, Norway - 03/2000

Flag / Registered : Swedish / Skärhamn

Owners : Trans Viking Icebreaking & Offshore AS , Kristiansand, Norway

Commercial Managers : Viking Supply Ships A/S, Kristiansand, Norway

Dimensions

Length Over All (LOA) : 83.70 metres Length between p.p. : 75.20 metres Breadth, moulded : 18.00 metres Depth, moulded : 8.50 metres Draught (scantling) : 7.20 metres Draught (design) : 6.00 metres Freeboard (design) : 2.50 metres

Tonnage

Dead Weight : 2,528 tonnes Light Ship : 4,289 tonnes Gross : 3,382 tonnes Net : 1,145 tonnes

Capacities Dry Bulk : 283 m 3 in 4 tanks - totalling 10,000 ft 3 Pot Water : 724 m 3 Drill Water / Ballast : 1,113 m 3 Brine : 400 m 3 - SG 2.5 Oil Based Mud : 657 m 3 - SG 2.8 Base Oil : 242 m 3 Fuel Oil : 1,190 m 3 Marine Gas Oil (Diesel) Urea : 94 m 3 Diesel Overflow : 21 m 3 with alarm Diesel Service / Settling : 2 x 20 m 3 Deck Load : Abt 1,350 ts Deck Area : 603 m 2 / 40.20 m x 15.0 m

All products in dedicated tanks - no dual purpose tanks

Discharge Rates / Lines etc.

Dry Bulk : 2 x 25 m 3/h compressors – 80 psi. Two separate discharge systems. Discharge rate 2 x 75 m 3 / h at 90 metres head Pot Water : Discharge rate 1 x 250 m 3 / h at 9 bar Drill Water / Ballast : Discharge rate 1 x 250 m 3 / h at 9 bar Brine : Discharge rate 2 x 75 m 3 / h at 18 bar Oil Based Mud : Discharge rate 2 x 75 m 3 / h at 24 bar - Oil Mud Agitators fitted Base Oil : Discharge rate 1 x 75 m 3 / h at 9 bar Fuel Oil (Discel) : Discharge rate 1 x 250 m 3 / h at 9 bar Discharge Stations : All products mid and aft both SB and PS Discharge Lines : 6 inch Weco system with reducers for Pot / Drill Water, Fuel Oil and Dry Bulk 5 inch Weco system with reducers for Brine, Base Oil and Oil Base Mud Tank cleaning : Mud and Base Oil tanks fitted with permanent tank cleaning system and heating Flow Meters : Flow meters fitted for Pot Water and Fuel Oil (Digital display + printer for MGO)

Propulsion

Main Engine : MAK 18,300 BHP - 4 eng (father/son) 2 x 3,840 kW + 2 x 2,880 kW = 13,440 kW Thrusters : Bow 1,200 BHP in tunnel (Electr) + 1,200 BHP 360 deg retractable = 2,400 BHP : Stern 1,200 BHP in tunnel (Electrical) Propellers : 2 KaMeWa 4 blades in nozzles – dia abt 4.0 meter Rudders : 2 spade rudders

Bollard Pull

Bollard Pull : 202 continuous (DnV certified) / Abt 210 max pull

Viking Supply Ships AS - Vessels

Speed/Consumption : 16 knots – Abt. 42.7 MT / 24 hrs at 6.0 meter draught : 12 knots – Abt. 15.6 MT

: 10 knots – Abt. 8.6 MT

Towing & Anchorhandling Equipment

AHT Winch : Brattvaag towing/anchorhandling winch 400 ts pull / 550 ts brake holding cap AHT Drum : One of 1,400 mm dia. x 3,750 dia x (1,250 mm + 1,250 mm) length Wire Capacity : 2 x 1,900 m of 77 mm wire or 2 x 1,650 m of 83 mm wire AH Drum : One of 1,400 mm dia. x 3,750 mm dia. x 3,000 mm length Wire Capacity : 4,100 m of 83 mm wire Winch Control : TOWCON 2000 Aut. Control with printer Pennant Reels/Caps : One off 2 x 1,500 m of 77 mm wire or 2 x 1,300 m of 83 mm wire capacity : One off 3,400 m of 77 mm wire or 1 x 3,100 m of 83 mm wire capacity

Spooling device :

Work / Towing drums arranged according to latest NMD requirements Cable Lifters : 2×76 mm and 2×84 mm onboard Chain Lockers : 2×127 m 3 / giving abt $2 \times 6,000$ ft of 3 inch chain Shark Jaws : 2 sets of Karm Forks arranged for chain up to 165 mm dia / 750 ts SWL Inserts for handling 65, 75, 85, 100, and 120 mm dia. wire/chain : Forks arranged with alarm system acc to latest NMD requirements Stern Roller : One of 3,5 m dia. x 6.0 m length – SWL 500 ts Guide Pins : 2 pairs of Karm Fork Hydraulic pins – SWL 170 ts

Workwires

Work Wire : 300 metres of 77 mm dia Chase Wire : 1,000 metres of 83 mm dia Main Tow Wire : 1,500 metres of 83 mm dia Spare Tow Wire : 1,300 metres of 83 mm dia

Deck Equipment

Capstans: 2 x 15 ts pull Tugger Winches: 2 x 15 ts pull Smit Brackets: One bracket on B Deck FW – SWL 250 ts Cranes: 1 hydraulic crane on forep cargo deck giving 6 / 12 ts at 20/10 m arm (360 degr) : 1 telescopic crane on aft cargo deck giving 1.5 / 3 ts at 15/10 m arm (360 degr) : 1 hydraulic crane on fore-castle deck for stores etc Windlass: 1 hydraulic windlass / mooring winch. Two de-clutch able drums 46 mm K3 chain

Accommodation

Accommodation for a total of 23 persons, including crew All accommodation equipped with air-condition and humidification facilities.

Misc.

We would like to highlight the exceptional good manoeuvrability of the vessel. Also please note the environmental bonus using "Tor Viking II" due to her exceptional low noise level, and the installed Exhaust Gas Treatment Systems (Catalyst), effectively reducing the NOx levels. "Tor Viking II" is also equipped with diesel overflow tank with alarm system. The vessels design, and her possibility for running 2 engines, ("father/son") gives very favourable fuel consumption. Spooling Devizes and DynPos 2 – Kongsberg Simrad SDP21 – "DP Green" system were installed in May 2003

Particulars believed to be correct, without guarantee

Viking Supply Ships A/S P.O. Box 204 Markensgate 9 4662 Kristiansand S, Norway

Telephone: (+47) 38 12 41 70 Telefax: (+47) 38 04 83 38 E-Mail: vikingsupply@vikingsupply.com Web Site: www.vikingsupply.com

Supporting Information - Fennica/Nordica

OFFSHORE

Powerful, high-tech, multipurpose vessels for global underwater oil field construction

Designed for the management, maintenance and service of offshore oil wells, the 97-metre Botnica is a multipurpose vessel specialised in marine construction and icebreaking, as are the 116-metre vessels Fennica and Nordica. They are equipped with diesel-electric propulsion systems and their innovative combination of capabilities, based on extensive design and engineering work, facilitates their use in both arctic and tropical conditions. All three of these multipurpose vessels are highly advanced, powerful and extremely well designed and built.

Unique technology for demanding conditions

These vessels are ideal for offshore operations. The working deck is about 1,000 m², making it exceptionally large and level for ships of this length. The deck was designed for fast equipment changes. Depending on the ship, such equipment may range from simple deck cranes to a 160-tonne pedestal active heave compensated crane, or from deepwater installation equipment to pipe-laying systems, underwater machinery control or the towing and installation of large pipelines.

With their 15,000 kW power output and 230-tonne bollard pull, the Nordica and the Fennica are ideal for seabed ploughing and towing, and they are also fully equipped for anchor-handling operations. The ships' main engine and generator solution makes it possible to perform heavy-duty maintenance tasks without affecting their operating ability.

Both the Fennica and the Nordica are also equipped with a stern roller.

Accurate, safe and highly suitable

The Botnica's moon pool and the large size of its working deck make this ship highly suitable for a variety of offshore operations. Different types of special tools and structures can be installed on the working deck. The attributes of the Botnica, a class 3 DP ship, are in keeping with the strict rules and stipulations demanded in oil well management, as well as the requirements on oil fields set by the Norwegian Maritime Directorate.

The multipurpose icebreakers are equipped with Kongsberg Simrad's Dynamic Positioning (DP) system, which has five independent control units operating their main propellers and three bow thrusters. Even in a sector in which ocean vessels equipped with DP systems are a normal sight, these vessels have performed their tasks exceptionally well in terms of manoeuvrability and accuracy. Their unusual asymmetrical and spacious navigation bridge was designed with an eye to the requirements placed on the ship's multiple applications, both on the open sea and in icebreaking and towing operations.

The vessels have a separate deck for the clients' use, with cabins and offices and a separate data network. The high quality facilities accommodate a total of 45-47 guests, depending on the ship.

Fennica Dimensions Lenath 116.00 m 26.00 m Beam Draught 8.40 m max. Built 1993 Max. speed 16 knots Class DnV + 1A1 - Tug Supply Vessel - SF - EO -Icebreaker polar - 10, Dynpos, AUTR, Helideck Dynpos Simrad ADP 702 Accommodation 82 persons 24 cabins for client use (47 persons) Client's offices: 1 operation centre on 4th bridge deck, 1 x 20 m² office Helideck Superpuma or similar Deck Working deck area 1090 m² Anchor handling/winch Aquamaster TAW 3000/3000 E Machinerv Main engines 2 x Wärtsilä Diesel, Vasa 16V 32, each 6000 kW 2 x Wärtsilä Diesel, Vasa 12V 32, each 4500 kW Generators ABB Strömberg Drives 2 x HSG 1120 MP8, power 8.314 kVA, Volt 6.3 KV, speed750 rpm 2 x HSG 900 LR8, power 6.235 kVA, Volt 6.3 KV, speed 750 rpm Propellers 2 x HSSOL 18/1654, output 7.500 kW each, ABB Strömberg Drives 2x Aquamater-Rauma US ARC 1, 7500 kW each, FP propellers, variable RPM Bow thrusters 3 x Brunvoll FV-80 LTC-2250, VP propellers 1.050 kW each Bollard pull 234 tons

Crane(s) (optional)

30 tons/38 metre jib Stb 15 tons Port A-frame 120 tons **Navigation Equipment** Robertson ECDIS Navigation System Doppler speed log Loran C GPS Fiber optic gyros Differential GPS Gyro. Navintra Ecdis Direction finder Echo sounder Facsimile recorder **Communication Equipment** 1 x Skanti TRP 8400D MF/HF SSB, including all GMDSS requirements 1 x Watch receiver 1 x Aero VHF. Helicopter communication 6 x VHF

1 x Navtex receiver

- 1 x Inmarsat B satellite comm. system
- VSAT online satellite comm. system

3 x UHF walkie-talkie

- 3 x VHF walkie-talkie
- 2 x Freefloat EPRIB, 121,5 and 406 MHz 2 x Distress transponders, 96 Hz
- Call signal OJAD

Nordica

Length

Draught

Beam

Dimensions

116.00 m 26.00 m 8.40 m max. 1994 16 knots

Built Max. speed Class

DnV + 1A1 – Tug Supply Vessel – SF – EO – Icebreaker polar - 10, Dynpos, AUTR, Helideck Dynpos

Simrad ADP 702

Accommodation

82 persons

24 cabins for client use (47 persons) Client's offices: 1 operation centre on 4th bridge deck, 1 x 20 m² office

Helideck Superpuma or similar

Deck Working deck area 1090 m² Anchor handling/towing winch

Aquamaster TAW 3000/3000 E Machinery

Main engines 2 x Wärtsilä Diesel, Vasa 16V 32, each 6000 kW 2 x Wärtsilä Diesel Vasa 12V 32 each 4500 kW Generators ABB Strömberg Drives 2 x HSG 1120 MP8, power 8.314 kVA, Volt 6.3 KV, speed750 rpm 2 x HSG 900 LR8, power 6.235 kVA, Volt 6.3 KV, speed 750 rpm Propellers 2 x HSSOL 18/1654, output 7.500 kW each, ABB Strömberg Drives 2x Aquamater-Rauma US ARC 1, 7500 kW each, FP propellers, variable RPM Bow thrusters 3 x Brunvoll FV-80 LTC-2250, VP propellers 1.050 kW each Bollard pull 234 tons

Main crane (optional)		
Lifting capacity	160 T/9 m	
	30 T/32 m	
Main winch	Active Heave	
	Compensated	
	Constant Tension	
Heave amplitude	+ 3,5 m double part	
	+ 7 m single part	
Operating depth	500 m-160 T (double part)	
	1000 m–80 T (single part)	
Aux winch	10 T, 33 m,	
	Constant Tension	
Tugger winches	2 x 4 T Constant Tension	
Port	15 tons	
A-frame (optional) 120 tons		
Navigation Equipment Navintra ECDIS Navigation System		
Doppler speed log		

speed log opp Loran C GPS Fiber Optic Gyros Differential GPS Gyro. Direction finder Echo sounder Facsimile recorder

Communication Equipment

1 x Skanti TRP 8400D MF/HF SSB, including all GMDSS requirements 1 x Watch receiver

1 x Aero VHF. Helicopter communication 6 x VHF 1 x Navtex receiver

- 1 x Inmarsat B satellite comm. system VSAT online satellite comm. system 3 x UHF walkie-talkie
- 3 x VHF walkie-talkie
- 2 x Freefloat EPRIB, 121,5 and 406 MHz
- 2 x Distress transponders, 96 Hz
- OJAE Call signal

Botnica

Dimensions

Length 96.70 m Beam 24.00 m Draught 7.2 to 8.5 m 1998 Built 15 knots Max. speed Class DnV + 1A1 - Supply Vessel - SF - EO -Icebreaker Ice - 10, Dynpos AUTRO, RPS NMD Mobile offshore Units, DP UNIT, with equipment class 3 Dynpos

Simrad SDP22 + SDP12 backup 2 x HIPAP combined SSBL/MULBL hydroacoustic system 2 x Seatex DPS DGPS combined GPS/Glonass

Accommodation

72 persons 24 cabins for client use (45 pers.) 2 x client's office

Helideck

Superpuma or similar

Deck

Working deck area 1000 m²

Machinerv

Main engines 12 x Caterpillar 3512B, 1257 kW, 1500 rpm Main generators 6 x ABB-AMG 560, 2850 kVA, 3,3 kV 3 N, 50 Hz Emergency generators

1 x Caterpillar 3406, 200 kW, 400 V, 3 N,

50 Hz

Main propulsion Stern 2 x 5000 kW Azipod, FP

Bow thrusters

3 x Brunvol tunnel, variable pitch á 1150 kW Bollard pull 117 tons

Crane(s) (optional)

1 x Hydralift, 160 tons 1 x 15 tons

Main cranes

160 T/9 m Lifting capacity 30 T/32 m Main winch Active Heave Compensated

Constant Tension Heave amplitude + 4 m double part + 8 m single part Operating Depth 550 m-160 T (double part) 1100 m- 80 (single part)

Aux winch 10 T, 33 m, **Constant Tension**

6.5 x 6.5 metres

Moonpool Navigation and communication equipment GMDSS Inmarsat B VSAT online satellite comm. system Call signal OJAK

Shipping Enterprise FI-00380 Helsinki, Finland Phone +358 30 620 7000, fax +358 30 620 7030 e-mail: shippind@finstachin fi e-mail: shipping@finstaship.fi www.finstaship.fi

GDV Maritime AS

Brygga Næringssenter Vikaveien 31, N-4817 His, Norway Phone +47 3701 2260, fax +47 3701 2862 e-mail: maritime@gdv.no www.gdv.no

APPENDIX B Emission Calculations

A				PROJECT TITLE: Shell Kulluk			BY: D. Young	
Afrank.				PROJECT N	0:		PAGE 1 0	OF 3
AIR SCIENCES INC.				1	80-15		SHEET 1	
	CALC	ULATION	S	SUBJECT:			DATE:	
BINNES + SUBTLAND				Emissio	ons in T	ons	12/22	2/2006
Kulluk Rig and Associated Vessels(Yea	ar 2007)							
EMISSIONS SUMMARY @ EXPECT	ED MAXIMUN	Λ		arly Emissi				
			NOx		PM10	VOC		
Rig / Vessel Kulluk Rig			<u>tons</u> 48.7	tons 7.9	tons 2.3	tons 1.9	tons 4.6	
			46.7	44.5	2.3 3.6	7.2		
Vladimir Ignatjuk								
Tor Viking II (2007)			21.1	19.8	1.7	2.9		
Jim Kilabuk (resupply vessel) Kulluk's OSR Fleet			1.6 10.7	0.4 9.2	0.0	0.1		
RUIIUR S USR FIEEL			245.0	9.2	0.5	1.2 13.3	1.0 22.6	
			245.0	81.8	8.1	13.3	22.0	
Each Source								
Kulluk Rig			Yearly E	Emissions a	at any lo	ocation		
0	Rated Cap		NÓx		PM10		SO2	
		,	tons	tons	tons	tons	tons	
Main Engine	2,816	Hp	31.06	4.78	1.4	0.97	3.06	
Main Engine	2,816		12.23	1.88	0.55	0.38	1.21	
Main Engine	2,816				0.00	0.00		
Emergency Generator	920							
Air Compressor	500	•	0.146	0 128	0.007	0 146	0.034	
Air Compressor	500	•	0.039		0.002		0.009	
Air Compressor	500		0.000	0.000	0.002	0.000	0.000	
HPP Engine	250	•	0.093	0.02	0.007	0 008	0.005	
HPP Engine	250		0.093		0.007		0.005	
Deck Crane	340	-	2.487		0.177		0.123	
		•						
Deck Crane	340 340		0.933		0.066 0.066		0.046	
Deck Crane			0.933				0.046 0.003	
Thrustmaster Cat. 3516 B	2,000		0.048		0.001			
Thrustmaster Cat. 3516 B Anchor Winches	2,000	•	0.048	0.011	0.001	0.001	0.003	
		Electric						
Cementing Unit	440	Electric	0.00	0.00	0.00	0.00	0.04	
Logging Diesel Winch	140	•	0.29	0.06	0.02	0.02	0.01	
Logging Backup Winch Detroit 471	120		0.040	0.001	0.04	0.007	0.040	
Heat Boiler		mmBtu	0.243	0.061	0.04	0.007	0.046	
Heat Boiler		mmBtu	0.046	0.001-	0.000	FF A ·	0.000.	
Hot Water Heat		mmBtu	0.018	0.0045	0.003	5E-04	0.0034	
Hot Water Heat	0.54	mmBtu						
Incinerator		N/A						
			48.66	7.95	2.35	1.93	4.60	

A			PROJECT TI She PROJECT N	ll Kulluk	(BY: D. Yo PAGE 2 OI	
AIR SCIENCES INC.			1	80-15		SHEET 1	
	CALCULATION	IS	SUBJECT:			DATE:	
D1M-F18 + FERTLAND			Emissio	ons in T	ons	12/22/	2006
Kulluk Rig and Associated Vessels((ear 2007) - Each Sou	rce, cor	ntinued				
Vladimir Ignatjuk		Yearly E	Emissions a	at any lo	ocation		
	Rated Capacity	NÖx	CO	PM10	VOC	SO2	
		tons	tons	tons	tons	tons	
Main Engine	5,800 Hp	63.96	14.66	1.07	1.88	4.1	
Main Engine	5,800 Hp	63.96	14.66	1.07	1.88	4.1	
Main Engine	5,800 Hp	10.37	2.38	0.17	0.3	0.66	
Main Engine	5,800 Hp	10.37	2.38	0.17	0.3		
Generator	1,431 Hp	14.01	3.21	0.23	0.41	0.9	
Generator	1,431 Hp						
Emergency Generator	292 Hp	0.44	0.007	0.040	0.000	0.004	
Heat Boiler	2.4 mmBtu	0.11		0.018			
Hot Water Heat	0.54 mmBtu					0.0104	
Incinerator	0.033 ton/hr	0.07	7.13	0.83	2.38	0.06	
		162.90	44.46	3.57	7.15	10.51	
Tor Viking II (2007) Main Engine/Generator	Rated Capacity 5,046 Hp	NOx tons 5.39	Emissions a CO tons 4.54	PM10 PM10 tons 0.38		tons	
Main Engine/Generator	5,046 Hp	6.13	5.17	0.43	0.76		
Main Engine/Generator	3,784 Hp	5.23	5.44	0.46	0.8		
Main Engine/Generator	3,784 Hp	3.72	3.87	0.32	0.57		
Harbor generator	1,168 Hp	0.58	0.77	0.06	0.11	0.25	
Emergency Generator Heat Boiler	254 Hp 1.37 mmBtu			0.011			
Incinerator	N/A						
		21.12	19.81	1.66	2.91	6.37	

R SCIENCES INC.			Cha	TLE: II Kulluk		BY:	ouna
			Sne PROJECT N	II Kulluk		D. Y PAGE 3 O	oung
				0: 80-15		SHEET 1	F 3
DFNVIB + POSTLAND	CALCULATIO	NC	SUBJECT:	50-15		DATE:	
	CALCULATIO	113	Emissio	ons in T	ons	12/22	/2006
ulluk Rig and Associated Vessels (Yea	ar 2007) - Each So	urce, coi	ntinued				
Jim Kilabuk (resupply vessel)		Yearly E	Emissions a	at any lo	cation		
	Rated Capacity	NOx	CO	PM10	VOC	SO2	
		tons		tons	tons		
Main Engine EMD V20 645	3,600 hp	0.69		0.01	0.02		
Main Engine EMD V20 645	3,600 Hp	0.69		0.01	0.02		
Generator, Cat. D3406	292 Hp	0.18	0.04	0.01	0.01	0.01	
Generator, Cat. D3406	292 Hp						
HPP, Cat. D343	300 Hp						
Bow Thruster Cat. D343	300 Hp	0.074		0.005		0.004	
		1.63	0.38	0.04	0.06	0.09	
Kulluk's OSR Fleet			Emissions a				
	Rated Capacity	NOx		PM10	VOC	SO2	
		tons	tons	tons	tons	tons	
Engine 1 on OSRV	2,710 Hp	0.71		0.01	0.08		
Engine 2 on OSRV	2,710 Hp	0.71	0.06	0.01	0.08	0.07	
Generator 1 on OSRV	1,285 Hp	6.86	8.49	0.4	0.97	0.7	
Generator 2 on OSRV	1,285 Hp						
Emergency generator on OSRV	1,285 Hp	0.087		0.005		0.009	
Kvichak 34' work boat #1	300 Hp	0.046		0.001		0.007	
Kvichak 34' work boat #1	300 Hp	0.046		0.001		0.007	
Kvichak 34' work boat #2	300 Hp	0.046		0.001			
Kvichak 34' work boat #2	300 Hp	0.046		0.001			
Engine 1 on tug for supply barge	1,500 Hp	1.062		0.018		0.068	
Engine 2 on tug for supply barge	1,500 Hp	1.062		0.018		0.068	
		10.68	9.21	0.47	1.21	1.01	

			PROJECT TITLE:	BY:
A			Shell Kulluk	D. Young
Manufith.			PROJECT NO:	PAGE 1 OF 1
AIR SCIENCES INC.			180-15	SHEET 2
	CALCULATIO	NS	SUBJECT:	DATE:
DENVIR · FORTIAND			Fuel Use Summary	12/22/2006
Drill Rig and Ve	essel Diesel Fuel Use (Yr	2007)		
	Fuel use for Kull Year	uk at any lo [.] 2007	ocation	
	Rig/Vessel	gallons	cu meter	
	KULLUK RIG	329,409) 1,247	
	VLADIMIR IGNATJUK	709,461		
	TOR VIKING II	429,663		
	JIM KILABUK	6,728		
	Kulluk's OSR Fleet	67,864		
		1,543,125		
	Conversion factor:	264.1721	gal/cubic meter	
			C C C C C C C C C C C C C C C C C C C	

A			PROJECT TITLE:	BY:	
A			Shell	Kulluk	D. Young
			PROJECT NO:		PAGE 1 OF 3
AIR SCIENCES INC.			18	0-15	SHEET 3
	CALC	JLATIONS	SUBJECT:		DATE:
BERNELE + REALISIE			Fuel Use & O	perating Hours	12/22/2006
Fuel Use & Operating Hours (Yr 2007)					
Kulluk Rig			Equivalent	Fuel Use*	
^c	Rated Cap	acity	Operating		
	•	,	Hours	Gallons	
Main Engine	2,816	Нр	1,414	203,451	_
Main Engine	2,816	Hp	557	80,143	
Main Engine	2,816	Нр			
Emergency Generator	920	Нр			
Air Compressor	500	Нр	89	2,274	
Air Compressor	500	Нр	24	613	
Air Compressor	500	Hp			
HPP Engine	250	Hp	24	307	
HPP Engine	250	Hp	24	307	
Deck Crane	340	Нр	472	8,200	
Deck Crane	340	Hp	177	3,075	
Deck Crane	340	Hp	177	3,075	
Thrustmaster Cat. 3516 B	2,000	Hp	2	204	
Thrustmaster Cat. 3516 B	2,000	Нр	2	204	
Anchor Winches		Electric			
Cementing Unit		Electric			
Logging Diesel Winch	140		132	944	
Logging Backup Winch Detroit 471	120	Нр			
Heat Boiler		mmBtu	1,414	24,771	
Heat Boiler		mmBtu			
Hot Water Heat		mmBtu	467	1,841	
Hot Water Heat	0.54	mmBtu			
Incinerator		N/A			=
				329,409	

*Based on unit capacity, operating hours and diesel fuel heat content of 137,000 mmBtu/gal (AP42). Additionally for an engine the average brake-specific fuel consumption value of 7,000 btu/hp-hr (AP42) was used.

Jse & Operating Hours (Yr 2007) - contir Vladimir Ignatjuk	CALCULATIONS nued ted Capacity 5,800 Hp 5,800 Hp 5,800 Hp 5,800 Hp 1,431 Hp 1,431 Hp 1,431 Hp 292 Hp 2.4 mmBtu 0.54 mmBtu	PROJECT NO: 180 SUBJECT: Fuel Use & O Equivalent Operating Hours 919 919 149 149 149 816	Kulluk <u>perating Hours</u> Fuel Use* <u>Gallons</u> 272,346 272,346 44,156 44,156 59,655	D. Young PAGE 2 OF 3 SHEET 3 DATE: 12/22/2006
Jse & Operating Hours (Yr 2007) - contir Vladimir Ignatjuk Ra Main Engine Main Engine Main Engine Generator Generator Emergency Generator Heat Boiler Hot Water Heat	ted Capacity 5,800 Hp 5,800 Hp 5,800 Hp 5,800 Hp 1,431 Hp 1,431 Hp 1,431 Hp 292 Hp 2.4 mmBtu	180SUBJECT: Fuel Use & OEquivalent Operating Hours919 919 149 149 816	Fuel Use* Gallons 272,346 272,346 44,156 44,156	SHEET 3 DATE:
Use & Operating Hours (Yr 2007) - contir Vladimir Ignatjuk Ra Main Engine Main Engine Main Engine Generator Generator Emergency Generator Heat Boiler Hot Water Heat	ted Capacity 5,800 Hp 5,800 Hp 5,800 Hp 5,800 Hp 1,431 Hp 1,431 Hp 1,431 Hp 292 Hp 2.4 mmBtu	SUBJECT: Fuel Use & O Equivalent Operating Hours 919 919 149 149 149 816	Fuel Use* Gallons 272,346 272,346 44,156 44,156	DATE:
Use & Operating Hours (Yr 2007) - contir Vladimir Ignatjuk Ra Main Engine Main Engine Main Engine Generator Generator Emergency Generator Heat Boiler Hot Water Heat	ted Capacity 5,800 Hp 5,800 Hp 5,800 Hp 5,800 Hp 1,431 Hp 1,431 Hp 1,431 Hp 292 Hp 2.4 mmBtu	Fuel Use & O Equivalent Operating Hours 919 919 149 149 149 816	Fuel Use* <u>Gallons</u> 272,346 272,346 44,156 44,156	
Ra Main Engine Main Engine Main Engine Generator Generator Emergency Generator Heat Boiler Hot Water Heat	ted Capacity 5,800 Hp 5,800 Hp 5,800 Hp 5,800 Hp 1,431 Hp 1,431 Hp 292 Hp 2.4 mmBtu	Equivalent Operating Hours 919 919 149 149 816	Fuel Use* <u>Gallons</u> 272,346 272,346 44,156 44,156	12/22/2006
Vladimir Ignatjuk Rain Engine Main Engine Main Engine Generator Generator Emergency Generator Heat Boiler Hot Water Heat	ted Capacity 5,800 Hp 5,800 Hp 5,800 Hp 5,800 Hp 1,431 Hp 1,431 Hp 292 Hp 2.4 mmBtu	Operating Hours 919 919 149 149 816	Gallons 272,346 272,346 44,156 44,156	
Ra Main Engine Main Engine Main Engine Generator Generator Emergency Generator Heat Boiler Hot Water Heat	5,800 Hp 5,800 Hp 5,800 Hp 5,800 Hp 1,431 Hp 1,431 Hp 292 Hp 2.4 mmBtu	Operating Hours 919 919 149 149 816	Gallons 272,346 272,346 44,156 44,156	
Ra Main Engine Main Engine Main Engine Generator Generator Emergency Generator Heat Boiler Hot Water Heat	5,800 Hp 5,800 Hp 5,800 Hp 5,800 Hp 1,431 Hp 1,431 Hp 292 Hp 2.4 mmBtu	Hours 919 919 149 149 816	272,346 272,346 44,156 44,156	
Main Engine Main Engine Main Engine Generator Generator Emergency Generator Heat Boiler Hot Water Heat	5,800 Hp 5,800 Hp 5,800 Hp 1,431 Hp 1,431 Hp 292 Hp 2.4 mmBtu	Hours 919 919 149 149 816	272,346 272,346 44,156 44,156	
Main Engine Main Engine Main Engine Generator Generator Emergency Generator Heat Boiler Hot Water Heat	5,800 Hp 5,800 Hp 5,800 Hp 1,431 Hp 1,431 Hp 292 Hp 2.4 mmBtu	919 919 149 149 816	272,346 272,346 44,156 44,156	
Main Engine Main Engine Main Engine Generator Generator Emergency Generator Heat Boiler Hot Water Heat	5,800 Hp 5,800 Hp 5,800 Hp 1,431 Hp 1,431 Hp 292 Hp 2.4 mmBtu	919 149 149 816	272,346 44,156 44,156	
Main Engine Main Engine Generator Generator Emergency Generator Heat Boiler Hot Water Heat	5,800 Hp 5,800 Hp 1,431 Hp 1,431 Hp 292 Hp 2.4 mmBtu	149 149 816	44,156 44,156	
Main Engine Generator Generator Emergency Generator Heat Boiler Hot Water Heat	5,800 Hp 1,431 Hp 1,431 Hp 292 Hp 2.4 mmBtu	149 816	44,156	
Generator Generator Emergency Generator Heat Boiler Hot Water Heat	1,431 Hp 1,431 Hp 292 Hp 2.4 mmBtu	816	,	
Generator Emergency Generator Heat Boiler Hot Water Heat	1,431 Hp 292 Hp 2.4 mmBtu		00,000	
Emergency Generator Heat Boiler Hot Water Heat	292 Hp 2.4 mmBtu			
Heat Boiler Hot Water Heat	2.4 mmBtu	0 / /		
Hot Water Heat			11 000	
	0.54 mmBtu	641	11,229	
Incinerator		1,414	5,573	
	0.033 ton/hr	1,440	709,461	:
			100,101	
Tor Viking II (2007)		Equivalent	Fuel Use*	
Ra	ted Capacity	Operating		
		Hours	Gallons	
Main Engine/Generator	5,046 Hp	376	96,942	
Main Engine/Generator	5,046 Hp	428	110,349	
Main Engine/Generator	3,784 Hp	601	116,199	
Main Engine/Generator	3,784 Hp	428	82,751	
Harbor generator	1,168 Hp	274	16,352	
Emergency Generator	254 Hp		- ,	
Heat Boiler	1.37 mmBtu	707	7,070	
Incinerator	N/A		.,	
monorator			429,663	:
			0,000	

*Based on unit capacity, operating hours and diesel fuel heat content of 137,000 mmBtu/gal (AP42). Additionally for an engine the average brake-specific fuel consumption value of 7,000 btu/hp-hr (AP42) was used.

		PROJECT TITLE:		BY:
		Shell	Kulluk	D. Young
		PROJECT NO:		PAGE 3 OF 3
NCES INC.		180	D-15	SHEET 3
	CALCULATIONS	SUBJECT:		DATE:
+ 22823,4008		Fuel Use & O	perating Hours	12/22/200
lse & Operating Hours (Yr 2007)	- continued			
Jim Kilabuk (resupply vessel)		Equivalent	Fuel Use*	
	Rated Capacity	Operating		
		Hours	Gallons	
Main Engine EMD V20 645	3,600 hp	16	2,943	-
Main Engine EMD V20 645	3,600 Hp	16	2,943	
Generator, Cat. D3406	292 Hp	40	597	
Generator, Cat. D3406	292 Hp			
HPP, Cat. D343	300 Hp			
Bow Thruster Cat. D343	300 Hp	16	245	
			6,728	=
Kulluk's OSR Fleet		Equivalent	Fuel Use*	
	Rated Capacity	Operating		
		Hours	Gallons	_
Engine 1 on OSRV	2,710 Hp	36	4,985	
Engine 2 on OSRV	2,710 Hp	36	4,985	
Generator 1 on OSRV	1,285 Hp	707	46,419	
Generator 2 on OSRV	1,285 Hp			
Emergency generator on OSRV	1,285 Hp	9	591	
Kvichak 34' work boat #1	300 Hp	30	460	
Kvichak 34' work boat #1	300 Hp	30	460	
Kvichak 34' work boat #2	300 Hp	30	460	
Kvichak 34' work boat #2	300 Hp	30	460	
Engine 1 on tug for supply barge	1,500 Hp	59	4,522	
	1.500 Hp	59	4.522	
				=
Engine 2 on tug for supply barge	1,500 Hp	59	<u>4,522</u> 67,864	=

*Based on unit capacity, operating hours and diesel fuel heat content of 137,000 mmBtu/gal (AP42). Additionally for an engine the average brake-specific fuel consumption value of 7,000 btu/hp-hr (AP42) was used.

				PROJECT T			BY:	
A					Shell Kullu	k		oung
				PROJECT N			PAGE 1	OF 3
AIR SCIENCES INC.					180-15		SHEET 4	
		CA	LCULATIONS	SUBJECT:			DATE:	
[4] [4 (1) + (0) [0] + (0)]				Emiss	ion Factor	rs (EF)	12/22	/2006
Emission Factors (Yr 2007)								
Kulluk Rig		rating		NOx	со	PM10	VOC	SO2
-		unit	EF category		(lb/	hp-hr or lb/	/mmBtu)	
Main Engine	2,816	Нр	Kulluk main engines (adj.)	0.0156	0.0024	0.000705	0.000485	0.0015371
Main Engine	2,816	Нр	Kulluk main engines (adj.)	0.0156	0.0024	0.000705	0.000485	0.0015371
Main Engine	2,816	Нр	Kulluk main engines (adj.)					
Emergency Generator	920	Нр	ICE >600 hp AP42					
Air Compressor	500	Hp	Air compressors	0.00658	0.00575	0.000329	0.00658	0.0015371
Air Compressor	500	Нр	Air compressors	0.00658	0.00575	0.000329	0.00658	0.0015371
Air Compressor	500	Нр	Air compressors					
HPP Engine	250	Hp	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
HPP Engine	250	Нр	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Deck Crane	340	Hp	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Deck Crane	340	Нр	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Deck Crane	340		ICE <=600 hp AP42		0.00668	0.0022		0.0015371
Thrustmaster Cat. 3516 B	2,000	Нр	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Thrustmaster Cat. 3516 B	2,000	Нр	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Anchor Winches		Electric	Not Applicable					
Cementing Unit		Electric	Not Applicable					
Logging Diesel Winch	140	Нр	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Logging Backup Winch Detroit 471	120	Hp	ICE <=600 hp AP42					
Heat Boiler	2.4	mmBtu	Boiler <100 mmBtu AP42	0.143	0.0357	0.0236	0.00397	0.02736
Heat Boiler	2.4	mmBtu	Boiler <100 mmBtu AP42					
Hot Water Heat	0.54	mmBtu	Boiler <100 mmBtu AP42	0.143	0.0357	0.0236	0.00397	0.02736
Hot Water Heat	0.54	mmBtu	Boiler <100 mmBtu AP42					
Incinerator		N/A	Not Applicable					

				PROJECT T			BY:	
A					Shell Kulluk			'oung
				PROJECT N	IO:		PAGE 2	OF 3
AIR SCIENCES INC.					180-15		SHEET 4	
		С	ALCULATIONS	SUBJECT:			DATE:	
01001045000000				Emis	sion Factors	s (EF)	12/22	2/2006
Emission Factors (Yr 2007)	- continued							
Vladimir Ignatjuk		rating		NOx	со	PM10	VOC	SO2
		unit	EF categor			p-hr or lb/m		
Main Engine	5,800	Нр	ICE >600 hp AP42	0.024				0.0015371
Main Engine	5,800	Нр	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Main Engine	5,800	Нр	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Main Engine	5,800	Нр	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Generator	1,431	Hp	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Generator	1,431	Чр	ICE >600 hp AP42					
Emergency Generator	292		ICE <=600 hp AP42					
Heat Boiler			Boiler <100 mmBtu AP42	0.143	0.0357	0.0236	0.00397	0.02736
Hot Water Heat			Boiler <100 mmBtu AP42	0.143	0.0357	0.0236	0.00397	0.02736
Incinerator		ton/hr	Shipboard incinerator. AP42	3	300	35	100	2.5
	0.000			0	000	00	100	2.0
Tor Viking II (2007)		rating		NOx	СО	PM10	VOC	SO2
		unit	EF category			p-hr or lb/m		
Main Engine/Generator	5,046		ICE Tor Viking 8M					0.0015371
Main Engine/Generator	5,046		ICE Tor Viking 8M					0.0015371
Main Engine/Generator	3,784	1.	ICE Tor Viking 6M					0.0015371
Main Engine/Generator	3,784		ICE Tor Viking 6M					0.0015371
Harbor generator Emergency Generator	1,168 254		ICE Tor Viking Cat 3412 ICE <=600 hp AP42	0.00362	0.004785	0.000401	0.000705	0.0015371
Heat Boiler Incinerator	1.37	mmBtu N/A	Boiler <100 mmBtu AP42 Not Applicable	0.143	0.0357	0.0236	0.00397	0.02736

				PROJECT T			BY:	
A					Shell Kulluk	('oung
				PROJECT N			PAGE 3	OF 3
AIR SCIENCES INC.					180-15		SHEET 4	
		c	ALCULATIONS	SUBJECT:			DATE:	
1110-0.0 4 + 1001 (mm)				Emis	sion Factor	s (EF)	12/22	2/2006
Emission Factors (Yr 2007) - continu	led							
Jim Kilabuk (resupply vessel)		rating	I	NOx	со	PM10	VOC	SO2
		unit	EF category		(lb/h	p-hr or lb/m	mBtu)	
Main Engine EMD V20 645	3,600	hp	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Main Engine EMD V20 645	3,600	Hp	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Generator, Cat. D3406	292	Hp	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Generator, Cat. D3406	292	Hp	ICE <=600 hp AP42					
HPP, Cat. D343	300	Hp	ICE <=600 hp AP42					
Bow Thruster Cat. D343	300	Нр	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Kulluk's OSR Fleet		rating	l	NOx	со	PM10	VOC	SO2
		unit	EF category		(lb/h	p-hr or lb/m	mBtu)	
Engine 1 on OSRV	2,710	Нр	OSRV main engine	0.0146	0.0012	0.00028	0.00163	0.0015371
Engine 2 on OSRV	2,710	Нр	OSRV main engine	0.0146	0.0012	0.00028	0.00163	0.0015371
Generator 1 on OSRV	1,285	Hp	OSRV generator	0.0151	0.0187	0.00089	0.00214	0.0015371
Generator 2 on OSRV	1,285	Hp	OSRV generator					
Emergency generator on OSRV	1,285	Нр	OSRV generator	0.0151	0.0187	0.00089	0.00214	0.0015371
Kvichak 34' work boat #1	300	Hp	Kvic. 34' vessel engine	0.01024	0.000171	0.000169	0.000342	0.0015371
Kvichak 34' work boat #1	300	Нр	Kvic. 34' vessel engine	0.01024	0.000171	0.000169	0.000342	0.0015371
Kvichak 34' work boat #2	300	Нр	Kvic. 34' vessel engine	0.01024	0.000171	0.000169	0.000342	0.0015371
Kvichak 34' work boat #2	300	нр	Kvic. 34' vessel engine	0.01024	0.000171	0.000169	0.000342	0.0015371
Engine 1 on tug for supply barge	1,500	Чр	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Engine 2 on tug for supply barge	1,500	нр	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371

			PROJECT TI			BY:	
A				Shell Kullul	<	D. Young	
			PROJECT NO			PAGE 1 O	- 3
AIR SCIENCES INC.				180-15		SHEET 5	
	CALCULATIO	DNS	SUBJECT:			DATE:	
DENTIN PROFILMEN			Hour	ly Emission	Rate	12/22/2006	
Hourly Emissions (Yr 2007)							
Kulluk Rig	Rated Capacity	NOx	со	PM10	VOC	SO2	
5		lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	
Main Engine	2,816 Hp	43.9296	6.7584	1.98528	1.36576	4.3284736	
Main Engine	2,816 Hp	43.9296	6.7584	1.98528	1.36576	4.3284736	
Main Engine	2,816 Hp						
Emergency Generator	920 Hp						
Air Compressor	500 Hp	3.29	2.875	0.1645	3.29	0.76855	
Air Compressor	500 Hp	3.29	2.875	0.1645	3.29	0.76855	
Air Compressor	500 Hp						
HPP Engine	250 Hp	7.75	1.67	0.55	0.6275	0.384275	
HPP Engine	250 Hp	7.75	1.67	0.55	0.6275	0.384275	
Deck Crane	340 Hp	10.54	2.2712	0.748	0.8534	0.522614	
Deck Crane	340 Hp	10.54	2.2712	0.748	0.8534	0.522614	
Deck Crane	340 Hp	10.54	2.2712	0.748	0.8534	0.522614	
Thrustmaster Cat. 3516 B	2,000 Hp	48	11	0.802	1.41	3.0742	
Thrustmaster Cat. 3516 B	2,000 Hp	48	11	0.802	1.41	3.0742	
Anchor Winches	Electric						
Cementing Unit	Electric						
Logging Diesel Winch	140 Hp	4.34	0.9352	0.308	0.3514	0.215194	
Logging Backup Winch Detroit 471	120 Hp						
Heat Boiler	2.4 mmBtu	0.3432	0.08568	0.05664	0.009528	0.065664	
Heat Boiler	2.4 mmBtu						
Hot Water Heat	0.54 mmBtu	0.07722	0.019278	0.012744	0.0021438	0.0147744	
Hot Water Heat	0.54 mmBtu						
Incinerator	N/A						

			PROJECT TI	TLE:		BY:
				Shell Kullul	<	D. Young
Alternation.			PROJECT NO			PAGE 2 OF 3
AIR SCIENCES INC.				180-15		SHEET 5
	CALCULATIO	DNS	SUBJECT:			DATE:
DINVIE PORTAND			Emis	sion Factor	s (EF)	12/22/2006
Hourly Emissions (Yr 2007)	- continued					
Vladimir Ignatjuk	Rated Capacity	NOx	СО	PM10	VOC	SO2
		lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
Main Engine	5,800 Hp	139.2				
Main Engine	5,800 Hp	139.2	31.9	2.3258	4.089	8.91518
Main Engine	5,800 Hp	139.2	31.9	2.3258	4.089	8.91518
Main Engine	5,800 Hp	139.2	31.9	2.3258	4.089	8.91518
Generator	1,431 Hp	34.3392	7.8694	0.573751	1.008714	2.19928268
Generator	1,431 Hp					
Emergency Generator	292 Hp					
Heat Boiler	2.4 mmBtu	0.3432	0.08568	0.05664	0.009528	0.065664
Hot Water Heat	0.54 mmBtu				0.0021438	0.0147744
Incinerator	0.033 ton/hr	0.099	9.9	1.155	3.3	0.0825
Tor Viking II (2007)	Rated Capacity	NOx	СО	PM10	VOC	SO2
		lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
Main Engine/Generator	5,046 Hp		24.14511		3.55743	
Main Engine/Generator	5,046 Hp		24.14511		3.55743	7.7562066
Main Engine/Generator	3,784 Hp		18.10644		2.66772	
Main Engine/Generator	3,784 Hp		18.10644		2.66772	5.8163864
Harbor generator	1,168 Hp	4.22816	5.58888	0.468368	0.82344	1.7953328
Emergency Generator	254 Hp					
Heat Boiler	1.37 mmBtu	0.19591	0.048909	0.032332	0.0054389	0.0374832
Incinerator	N/A					

			PROJECT TIT	LE:		BY:	
A			:	Shell Kulluk		D. Young	
Alternation.			PROJECT NO	:		PAGE 3 OF	3
AIR SCIENCES INC.				180-15	,	SHEET 5	
	CALCULATI	ONS	SUBJECT:			DATE:	
DREVIE-DISTLAND			Emiss	ion Factors	(EF)	12/22/2006	
Hourly Emissions (Yr 2007) - cc	ontinued						
Jim Kilabuk (resupply vessel)	Rated Capacity	NOx	СО	PM10	VOC	SO2	
		lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	
Main Engine EMD V20 645	3,600 hp	86.4		1.4436	2.538	5.53356	
Main Engine EMD V20 645	3,600 Hp	86.4	19.8	1.4436	2.538	5.53356	
Generator, Cat. D3406	292 Hp	9.052	1.95056	0.6424	0.73292	0.4488332	
Generator, Cat. D3406	292 Hp						
HPP, Cat. D343	300 Hp						
Bow Thruster Cat. D343	300 Hp	9.3	2.004	0.66	0.753	0.46113	
Kulluk's OSR Fleet	Rated Capacity	NOx lb/hr	CO lb/hr	PM10 lb/hr	VOC lb/hr	SO2 lb/hr	
Engine 1 on OSRV	2,710 Hp	39.566	3.252	0.7588	4.4173	4.165541	
Engine 2 on OSRV	2,710 Hp	39.566	3.252	0.7588	4.4173	4.165541	
Generator 1 on OSRV	1,285 Hp	19.4035	24.0295	1.14365	2.7499	1.9751735	
Generator 2 on OSRV	1,285 Hp						
Emergency generator on OSRV	1,285 Hp	19.4035	24.0295	1.14365	2.7499	1.9751735	
Kvichak 34' work boat #1	300 Hp	3.072	0.0513	0.0507	0.1026	0.46113	
Kvichak 34' work boat #1	300 Hp	3.072	0.0513	0.0507	0.1026	0.46113	
Kvichak 34' work boat #2	300 Hp	3.072	0.0513	0.0507	0.1026	0.46113	
Kvichak 34' work boat #2	300 Hp	3.072	0.0513	0.0507	0.1026	0.46113	
Engine 1 on tug for supply barge	1,500 Hp	36	8.25	0.6015	1.0575	2.30565	
Engine 2 on tug for supply barge	1,500 Hp	36	8.25	0.6015	1.0575	2.30565	

A						PROJECT TITLI	:		BY:
Alimath								Shell Kulluk	D. Young
						PROJECT NO:			PAGE 1 OF 1
AIR SCIENCES INC.								180-15	SHEET 6
			CALCUL	ATIONS		SUBJECT:			DATE:
BEDEES + HORISAND								mission Factors (Yr 2007)	12/22/2006
						nission Facto	ors (Yr 2007)		
Emissions Unit				nission Facto				Refer	ence
	:F Init	NOx	CO	PM10	VOC	SO2 value x S	SO2^ 0.19 = S		
Air compressors Ib	o/hp-hr	0.00658	0.00575	0.000329	0.00658	0.0015371		Tier 3, (planned). 225 to 450kw range. 500l NOX+NMHC value, CO, & PM. AP42: SO2	
Boiler <100 mmBtu AP42 lb	/mmBtu	0.143	0.0357	0.0236	0.00397	0.02736	0.144 S	AP42 Tbl 1.3-1: NOx, CO, & SO2, Tbls 1.3-	1 & 1.3-2; PM, and Tbl 1.2-3; VOC. 9/98
ICE <=600 hp AP42 lb)/hp-hr	0.031	0.00668	0.0022	0.00251	0.0015371	0.00809 S	AP42 Tbl 3.3-1, 10/96	
	p/hp-hr	0.024	0.0055	0.000401		0.0015371		AP42 Tbls 3.4-1 & 3.4-2 10/96	
1	p/hp-hr	0.0046	0.004785	0.000401	0.000705	0.0015371		Test of MaK 6M32: NOx; CO uses AP42 wi	th CE ^{^^} . AP42 remainder.
ICE Tor Viking 8M Ib)/hp-hr	0.00568	0.004785	0.000401	0.000705	0.0015371	0.00809 S	Test of MaK 8M32: NOx; CO uses AP42 wi	th CE ^{^^} . AP42 remainder.
ICE Tor Viking Cat 3412 lb)/hp-hr	0.00362	0.004785	0.000401	0.000705	0.0015371	0.00809 S	Test of Cat 3412: NOx; CO uses AP42 with	CE^^. AP42 remainder.
Kulluk main engines (adj.) Ib)/hp-hr	0.016	0.0024	0.000705	0.000485	0.0015371	0.00809 S	Spec for CBO Injectors, adjusted by 1.2: NO	Dx, CO, PM, & VOC. AP42: SO2.
Kvic. 34' vessel engine Ib)/hp-hr	0.01024	0.000171	0.000169	0.000342	0.0015371	0.00809 S	Cummins data: NOx, CO, PM10, & VOC. A	AP42: SO2.
Not Applicable		0	0	0	0	0			
OSRV generator Ib	o/hp-hr	0.0151	0.0187	0.00089	0.00214	0.0015371	0.00809 S	Tier 1 2000-2005 (vendor Cat data): NOx, 0	CO, PM10, & VOC. AP42: SO2.
OSRV main engine Ib	o/hp-hr	0.0146	0.0012	0.00028	0.00163	0.0015371	0.00809 S	Client provided Cat data: NOx, CO, PM10,	& VOC. AP42: SO2.
Shipboard incinerator. AP42 Ib	o/ton	3	300	35	100	2.5		AP42 Tbl 2.1-12, Industrial/commercial and of four) 10/96.	Domestic single chamber (largest factor

					PROJECT TITL	E: ntier Disc	overer	BY:	W. Wooster
					PROJECT NO:		070101	PAGE 1	
AIR SCIENCES INC.						180-15	5	SHEET 2	
3121 C		CALCUL	ATIONS		SUBJECT:			DATE: 12/28	2006
614000030138744							Limit (ORL)	12/28/	2006
Shell Kulluk Own	er Requeste	ed Limit (ORL	.) with To	or Viking II - Flee	et wide Dies	el Fuel	Consumptio	n	
General ORL NOx	Compliance	Equation:		$E_A + E_B + E_C + E_C$	_D + E _E	< ;	245 tons NOx		
Where	e:								
	E _A =		Emission	s from Shell Kullu	k		Vessel A		
	Е _в =		Emission	s from Vladimir Ig	natjuk		Vessel B		
	E _c =		Emission	s from Tor Viking	II		Vessel C		
	E _D =		Emission	s from Jim Kilabu	k		Vessel D		
	E _E =		Emission	s from Shell Kullu	k OSR Fleet		Vessel E		
Specific ORL NOx	Compliance	Equation:							
<pre>KRICE*((FA1*EFA1)+(FA1*EFA1)+(FA1*EFA1)+(FA1*EFA1)+(FA1*EFA1*EFA1)+(FA1*EFA1*EFA1*EFA1*EFA1*EFA1*EFA1*EFA1*E</pre>	A2*EFA2)+(FB1	_I *EF _{B1})+(F _{C1} *EI	F _{C1})+(F _{C2} *	EF _{C2})+(F _{E1} *EF _{E1}))	+K _{HEAT} *((F _{A3} *E	EF _{A3})+(F	_{B2} *EF _{B2})+(F _{C3} *	EF _{C3}))+0.8+0	.1+0.6+1.6+3.8 < 245 tons
where									
		00 / 7,000 / 2,0				0979	Hp-hr-ton / g		
	K _{HEAT} = 137,0 F _i =	000 / 1,000,000		urce group i (gallo	0.000(0685	mmBtu-ton /	gal-Ib	
	r; - EF; =	Emission facto		o	(13)				
	0.8 tons	Shell Kulluk re		•					
	0.0 tons 0.1 tons		•	ator emissions					
	0.6 tons	Tor Viking II re							
	1.6 tons	Jim Kilabuk er							
	3.8 tons	OSR Fleet rer	naining er	nissions					
	137,000	Btu/gallon	ΔP42 die	sel fuel heat cont	ont				
	7,000	Btu/hp-hr		erage brake-speci		mption			
	2,000	lb/ton	Conversi						
	1,000,000	Btu/mmBtu	Conversi	on factor					
Example Calculation	on of NOx En	nissions and (Comparis	on with ORL					
ORL Equation Varia	bles:			Vessel Source	NOx Emiss			Assumed D	
				Identification	Factor (El	F)		Fuel Consu	mption (F)
Kulluk main drilling e	engines			A1	0.0	0156 lb/ł	np-hr	250,000	gallons
Kulluk deck crane e				A2		.031 lb/l	•	,	gallons
Kulluk boilers/hot wa	ater heaters			A3	0	.143 lb/ı	nmBtu	25,000	gallons
/I main propulsion e		rators		B1		.024 lb/l		550,000	
/I boiler/hot water h		vratore (fathor (anginos)	B2		0.143 lb/i			gallons
IV main propulsion				C1 C2		0057 lb/l 0046 lb/l		200,000 200,000	
TV boiler			,	C3		.143 lb/i	•		gallons
Kulluk OSR Fleet - C	OSRV genera	tor		E1		0151 lb/l			gallons
ORL Equation Cons	tants:			Source ID	Tons of	NOx			
Kulluk remaining so	urces			A4		0.8			
VI incinerator				B3		0.1			
IV remaining source lim Kilabuk sources				C4 D		0.6 1.6			
OSR Fleet sources	,			E2		1.6 3.8			
Find:		(where A1 = V	essel Sou	rce Identification	EF x fuel cons	sumption	value; A2 etc.)	
s 245.0 tons >	137,000 Btu	hp-hr	ton	х	((F ₄₁ *EF ₄₁)+(FA2*EFA	2)+(F _{₽1} *EF₽1)+	(F _{C1} *EF _{C4})+(F	F _{C2} *EF _{C2})+(F _{E1} *EF _{E1}))
-	gallon	7,000 Btu	2,000 lb	-	((• AT -• A1/*)	· ~ 2 - A	2/ (· B1 🖵 B1/'		02 - 02/ ('ET - E1//
	3011011	.,	,000 10						
+	137,000 Btu	mmBtu	ton	x	((F _{A3} *EF _{A3})+((F _{B2} *EF _B	₂)+(F _{C3} *EF _{C3}))	+ 0.8 + 0.1 +	0.6 + 1.6 + 3.8 =
-	gallon	10^6 Btu	2,000 lb	-					205.2 tons NOx
Yes, 245 tons is gre	ater than 205	.2 tons NOx							
Therefore, equation	demonstrator	e compliance u	ith this by	nothatical ovama	<u>م</u>				

A			PROJECT T She	TTLE: ell Kullul	<	BY: D. Y	oung
Alman A		PROJECT N	10:		PAGE 1 OF 3		
SCIENCES INC.			1	80-15		SHEET 7	
	CALCULA	TIONS	SUBJECT:			DATE:	
OT IN CONTINUE			Emissi	ons in T	ons	12/22	/2006
lluk Rig and Associated Vessels (Yr	2008/2009)						
EMISSIONS SUMMARY @ EXPECT	TED MAXIMUM	IAXIMUM Yearly Er NOx		at any lo PM10	SO2		
Rig / Vessel		tons		tons	VOC tons		
Kulluk Rig		35.8		1.7	1.4		
Vladimir Ignatjuk		117.0		2.6	5.2		
Nordica/Fennica (2008-2009)		83.0		1.8	2.9		
Jim Kilabuk (resupply vessel)		1.2		0.0	0.1		
Kulluk's OSR Fleet		7.9		0.4	0.9		
		245.0		6.5	10.5		
Each Source							
Kulluk Rig		Yearly	Emissions a	at any lo	ocation		
5	Rated Capacit	y NÓx	cO	PM10	VOC	SO2	
		tons	tons	tons	tons	tons	
Main Engine	2,816 Hp	22.91	3.52	1.04	0.71	2.26	
Main Engine	2,816 Hp	9.8	1.37	0.4	0.28	0.88	
Main Engine	2,816 Hp)					
Emergency Generator	920 Hp						
Air Compressor	500 Hp		0.082	0.005	0.094	0.022	
Air Compressor	500 Hp	0.039	0.035	0.002	0.039	0.009	
Air Compressor	500 Hp)					
HPP Engine	250 Hp		0.02	0.007	0.008	0.005	
HPP Engine	250 Hp		0.02	0.007	0.008	0.005	
Deck Crane	340 Hp	1.834	0.395	0.13	0.148	0.091	
Deck Crane	340 Hp			0.049			
Deck Crane	340 Hp			0.049			
Thrustmaster Cat. 3516 B	2,000 Hp			0.001		0.003	
Thrustmaster Cat. 3516 B	2,000 Hp			0.001		0.003	
Anchor Winches	, ,	ectric	0.011	0.001	0.001	0.000	
Cementing Unit		ectric					
Logging Diesel Winch	140 Hp		0.04	0.01	0.01	0.01	
Logging Backup Winch Detroit 471	120 Hp		0.04	0.01	0.01	0.01	
Heat Boiler	2.4 mr		0.045	0.03	0.005	0.034	
Heat Boiler	2.4 mr		0.040	0.00	0.000	0.007	
Hot Water Heat		nBtu 0.0133	0.0033	0.002	4F-04	0.0025	
Hot Water Heat	0.54 mr		0.0000	0.002		0.0020	
	0.04 Mi						
Incinerator		-					
Incinerator		35.81	5.85	1.73	1.42	3.39	

				PROJECT T	ITLE: II Kulluk	,	BY:	
A				PROJECT N		`	D. Yo PAGE 2 OF	
CIENCES INC.					0. 80-15		SHEET 7	5
	CALCU	LATION	s	SUBJECT:	00 10		DATE:	
NTA L PONTANO					ons in T	ons	12/22/2	2006
uk Rig and Associated Vessels (Y	′r 2008/2009) - E	Each Se	ource, c	continued	I			
Vladimir Ignatjuk			Yearly E	Emissions a	at any Ic	cation		
	Rated Capa	acity	NOx	CO	PM10	VOC	SO2	
			tons	tons	tons	tons		
Main Engine	5,800		45.73	10.48	0.76	1.34		
Main Engine	5,800		45.73	10.48	0.76	1.34		
Main Engine	5,800		7.52	1.72	0.13	0.22		
Main Engine	5,800		7.52		0.13	0.22		
Generator	1,431	•	10.34	2.37	0.17	0.3	0.66	
Generator	1,431							
Emergency Generator	292	•						
Heat Boiler		mmBtu	0.081		0.013			
Hot Water Heat		mmBtu	0.0403	0.0101			0.0077	
Incinerator	0.033	ton/hr	0.05	5.35	0.62	1.78	0.04	
			117.01	32.15	2.59	5.20	7.54	
Nordica/Fennica (2008-2009) Main Engine	Rated Capa 7,884	Hp	NOx tons 19.6	tons 0.68	PM10 tons 0.42	VOC tons 0.68	1.3	
Main Engine	7,884		22.44	0.78	0.48	0.78		
Main Engine	5,913		23.93	0.83 0.59	0.51	0.83 0.59		
Main Engine Auxiliary Engine Emergency Generator	5,913 710 300	Нр	16.83	0.59	0.36	0.59	1.11	
Heat Boiler		mmBtu	0.166	0.041	0.027	0.005	0.032	
Heat Boiler Incinerator		mmBtu N/A	0.081	0.02	0.013	0.002	0.015	
			83.05	2.94	1.81	2.89	5.52	

			PROJECT T		,	BY: D. Young	
A			PROJECT N	ell Kulluk	`	D. Young PAGE 3 OF 3	
R SCIENCES INC.				80-15		SHEET 7	
na asan Sirikina).	CALCULATIO	SNC	SUBJECT:	00-10	DATE:		
REPORT ALL MORTANIA	CALCOLAIR		ons in T	12/22/2006			
40 x 3 x 2 x 3 x 4 x 5 x 2 x 2 x 2 x 3 x 2 x 2 x 3 x 2 x 3 x 2 x 3 x 2 x 3 x 3			LIII33	5115 111 1	0113	12/22/2006	
ulluk Rig and Associated Vessels (Yr 2008/2009) - Each	Source, o	continued	I			
Jim Kilabuk (resupply vessel)		Yearly I	Emissions a				
	Rated Capacity	NOx	CO	PM10	VOC	SO2	
		tons	tons	tons	tons	tons	
Main Engine EMD V20 645	3,600 hp	0.52	0.12	0.01	0.02	0.03	
Main Engine EMD V20 645	3,600 Hp	0.52	0.12	0.01	0.02	0.03	
Generator, Cat. D3406	292 Hp	0.14	0.03	0.01	0.01	0.01	
Generator, Cat. D3406	292 Hp						
HPP, Cat. D343	300 Hp						
Bow Thruster Cat. D343	300 Hp	0.056	0.012	0.004	0.005	0.003	
		1.24		0.03	0.06		
			0.20	2.00	0.00		
Kulluk's OSR Fleet		Yearly I	Emissions a	at any lo	ocation		
	Rated Capacity	NÖx	CO	PM10	VOC	SO2	
		tons	tons	tons	tons	tons	
Engine 1 on OSRV	2,710 Hp	0.53	0.04	0.01	0.06	0.06	
Engine 2 on OSRV	2,710 Hp	0.53	0.04	0.01	0.06	0.06	
Generator 1 on OSRV	1,285 Hp	5.06	6.27	0.3	0.72	0.52	
Generator 2 on OSRV	1,285 Hp						
Emergency generator on OSRV	1,285 Hp	0.068	0.084	0.004	0.01	0.007	
Kvichak 34' work boat #1	300 Hp	0.034		0.001			
Kvichak 34' work boat #1	300 Hp	0.034					
Kvichak 34' work boat #1	300 Hp	0.034					
Kvichak 34' work boat #2	300 Hp	0.034					
	1,500 Hp	0.034		0.001			
	1,500 HP	0.792	0.102				
Engine 1 on tug for supply barge	-	0 700	0 100	0 0 1 2			
	1,500 Hp	0.792		0.013	0.023		

			PROJECT TITLE:		BY:
			Shell Kullu	Jk	D. Young
			PROJECT NO:		PAGE 1 OF 1
AIR SCIENCES INC.			180-15		SHEET 8
	CALCULATION	IS	SUBJECT:		DATE:
DENTE · FORTIAND			Fuel Use Sun	nmary	12/22/2006
Drill Rig and Ve	ssel Diesel Fuel Use				
	Fuel use for Kullu Year 2008		cation		
	Rig/Vessel	gallons	cu meter_		
	KULLUK RIG	242,265	917		
	VLADIMIR IGNATJUK	509,823			
	NORDICA/FENNICA	472,586	1,789		
	JIM KILABUK	5,046			
	Kulluk's OSR Fleet	50,303			
		1,280,023	4,845		
	Conversion factor:	264.1721	gal/cubic meter		

A			PROJECT TITLE:		BY:
A.			Shell	Kulluk	D. Young
			PROJECT NO:		PAGE 1 OF 3
AIR SCIENCES INC.			18	D-15	SHEET 9
	CALC	JLATIONS	SUBJECT:		DATE:
III WITE - POLICOT			Fuel Use & O	perating Hours	12/22/2006
Fuel Use & Operating Hours (Yr 2008/20	09)				
Kulluk Rig			Equivalent	Fuel Use*	
-	Rated Cap	acity	Operating		
			Hours	Gallons	
Main Engine	2,816	Нр	1,043	150,070	-
Main Engine	2,816	Нр	405	58,273	
Main Engine	2,816	Нр			
Emergency Generator	920	Нр			
Air Compressor	500	Нр	57	1,456	
Air Compressor	500	Нр	24	613	
Air Compressor	500	Нр			
HPP Engine	250	Hp	24	307	
HPP Engine	250	Hp	24	307	
Deck Crane	340	Hp	348	6,046	
Deck Crane	340	Нр	131	2,276	
Deck Crane	340	Hp	131	2,276	
Thrustmaster Cat. 3516 B	2,000	Hp	2	204	
Thrustmaster Cat. 3516 B	2,000	Hp	2	204	
Anchor Winches		Electric			
Cementing Unit		Electric			
Logging Diesel Winch	140	Нр	84	601	
Logging Backup Winch Detroit 471	120	Нр			
Heat Boiler	2.4	mmBtu	1,043	18,272	
Heat Boiler	2.4	mmBtu			
Hot Water Heat	0.54	mmBtu	345	1,360	
Hot Water Heat	0.54	mmBtu			
Incinerator		N/A			_
				242,265	-

*Based on unit capacity, operating hours and diesel fuel heat content of 137,000 mmBtu/gal (AP42). Additionally for an engine the average brake-specific fuel consumption value of 7,000 btu/hp-hr (AP42) was used.

		PROJECT TITLE:		BY:
A			Kulluk	D. Young
		PROJECT NO:		PAGE 2 OF 3
IR SCIENCES INC.			0-15	SHEET 9
	CALCULATIONS	SUBJECT:		DATE:
818778 = 22831408		Fuel Use & O	perating Hours	12/22/2006
uel Use & Operating Hours (Yr 2008/	2009) - continued			
Vladimir Ignatjuk		Equivalent	Fuel Use*	
	Rated Capacity	Operating		
		Hours	Gallons	-
Main Engine	5,800 Hp	657	194,702	
Main Engine	5,800 Hp	657	194,702	
Main Engine	5,800 Hp	108	32,006	
Main Engine	5,800 Hp	108	32,006	
Generator	1,431 Hp	602	44,010	
Generator	1,431 Hp			
Emergency Generator	292 Hp			
Heat Boiler	2.4 mmBtu	473	8,286	
Hot Water Heat	0.54 mmBtu	1,043	4,111	
Incinerator	0.033 ton/hr	1,080		
			509,823	=
Nordica/Fennica (2008-2009)		Equivalent	Fuel Use*	
	Rated Capacity	Operating		
	. ,	Hours	Gallons	
Main Engine	7,884 Hp	263	105,945	-
Main Engine	7,884 Hp	301	121,252	
Main Engine	5,913 Hp	428	129,309	
Main Engine	5,913 Hp	301	90,939	
Auxiliary Engine	710 Hp			
Emergency Generator	300 Hp			
Heat Boiler	4.44 mmBtu	522	16,912	
Heat Boiler	4.44 mmBtu	254	8,229	
Incinerator	N/A			
			472,586	=

		PROJECT TITLE:		BY:
2			Kulluk	D. Young
		PROJECT NO:		PAGE 3 OF 3
NCES INC.)-15	SHEET 9
	CALCULATIONS	SUBJECT:		DATE:
OS FLAM B		Fuel Use & O	perating Hours	12/22/200
se & Operating Hours (Yr 2008/	2009) - continued			
Jim Kilabuk (resupply vessel)		Equivalent	Fuel Use*	
	Rated Capacity	Operating		
		Hours	Gallons	_
Main Engine EMD V20 645	3,600 hp	12	2,207	_
Main Engine EMD V20 645	3,600 Hp	12	2,207	
Generator, Cat. D3406	292 Hp	30	448	
Generator, Cat. D3406	292 Hp			
HPP, Cat. D343	300 Hp			
Bow Thruster Cat. D343	300 Hp	12	184	
			5,046	=
Kulluk's OSR Fleet		Equivalent	Fuel Use*	
	Rated Capacity	Operating		
		Hours	Gallons	
Engine 1 on OSRV	2,710 Hp	27	3,739	
Engine 2 on OSRV	2,710 Hp	27	3,739	
Generator 1 on OSRV	1,285 Hp	522	34,273	
Generator 2 on OSRV	1,285 Hp			
Emergency generator on OSRV	1,285 Hp	7	460	
Kvichak 34' work boat #1	300 Hp	22	337	
Kvichak 34' work boat #1	300 Hp	22	337	
Kvichak 34' work boat #2	300 Hp	22	337	
Kvichak 34' work boat #2	300 Hp	22	337	
Engine 1 on tug for supply barge	1,500 Hp	44	3,372	
Engine i on tag for cappiy barge	1,500 Hp	44	3,372	
Engine 2 on tug for supply barge			3,372	_
Engine 2 on tug for supply barge	1,000 T.P		50,303	-

*Based on unit capacity, operating hours and diesel fuel heat content of 137,000 mmBtu/gal (AP42). Additionally for an engine the average brake-specific fuel consumption value of 7,000 btu/hp-hr (AP42) was used.

				PROJECT T	ITLE:		BY:	
A					Shell Kullu	k		oung
				PROJECT N		N.	PAGE 1	
AIR SCIENCES INC.				I NOULUI N	180-15		SHEET 10	01 0
		CA	LCULATIONS	SUBJECT:	100 10		DATE:	
1 · · · · · · · · · · · · · · · · · · ·		•			ion Factor	s (EF)	12/22	/2006
						- ()	1	
Emission Factors (Yr 2008/2009)								
Kulluk Rig		rating		NOx	со	PM10	VOC	SO2
		unit	EF category			hp-hr or lb/		
Main Engine	2,816	Нр	Kulluk main engines (adj.)	0.0156		0.000705		0.0015371
Main Engine	2,816	Нр	Kulluk main engines (adj.)	0.0156	0.0024	0.000705	0.000485	0.0015371
Main Engine	2,816	Нр	Kulluk main engines (adj.)					
Emergency Generator	920	Нр	ICE >600 hp AP42					
Air Compressor	500	Нр	Air compressors	0.00658	0.00575	0.000329	0.00658	0.0015371
Air Compressor	500	Hp	Air compressors	0.00658	0.00575	0.000329	0.00658	0.0015371
Air Compressor	500	Hp	Air compressors					
HPP Engine	250	Hp	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
HPP Engine	250	Нр	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Deck Crane	340	Hp	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Deck Crane	340	Hp	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Deck Crane	340	Hp	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Thrustmaster Cat. 3516 B	2,000	Hp	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Thrustmaster Cat. 3516 B	2,000		ICE >600 hp AP42	0.024		0.000401		0.0015371
Anchor Winches	,	Electric	Not Applicable					
Cementing Unit		Electric	Not Applicable					
Logging Diesel Winch	140		ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Logging Backup Winch Detroit 471	120		ICE <=600 hp AP42					
Heat Boiler		mmBtu	Boiler <100 mmBtu AP42	0.143	0.0357	0.0236	0.00397	0.02736
Heat Boiler	2.4	mmBtu	Boiler <100 mmBtu AP42					
Hot Water Heat		mmBtu	Boiler <100 mmBtu AP42	0.143	0.0357	0.0236	0.00397	0.02736
Hot Water Heat		mmBtu	Boiler <100 mmBtu AP42					
Incinerator		N/A	Not Applicable					

				PROJECT T	ITLE: Shell Kulluk		BY:	oung
A				PROJECT N		`	PAGE 2	
AIR SCIENCES INC.				FROJECTIN	180-15		SHEET 10	OF 3
		0	ALCULATIONS	SUBJECT:	100-13		DATE:	
111111 C 8 1 (004) AUG		Ŭ	ALCOLATIONS		sion Factors			/2006
ECHONOLOGICS				Lillis	SIGHT ACION	5(LI)	12/22	12000
Emission Factors (Yr 2008/2009) - continued	ł						
Vladimir Ignatjuk		rating		NOx	СО	PM10	VOC	SO2
		unit	EF category			p-hr or lb/m		0.0045074
Main Engine	5,800		ICE >600 hp AP42	0.024				0.0015371
Main Engine	5,800		ICE >600 hp AP42	0.024				0.0015371
Main Engine	5,800		ICE >600 hp AP42	0.024				0.0015371
Main Engine	5,800		ICE >600 hp AP42	0.024				0.0015371
Generator	1,431		ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Generator	1,431		ICE >600 hp AP42					
Emergency Generator	292		ICE <=600 hp AP42					
Heat Boiler			Boiler <100 mmBtu AP42	0.143	0.0357	0.0236	0.00397	0.02736
Hot Water Heat	0.54	mmBtu	Boiler <100 mmBtu AP42	0.143	0.0357	0.0236	0.00397	0.02736
Incinerator	0.033	ton/hr	Shipboard incinerator. AP42	3	300	35	100	2.5
Nordica/Fennica (2008-2009)		rating		NOx	со	PM10	VOC	SO2
		unit	EF category			p-hr or lb/m		
Main Engine	7,884		Fennica/Nordica main engines	0.01891				0.0012502
Main Engine	7,884		Fennica/Nordica main engines					0.0012502
Main Engine	5,913		Fennica/Nordica main engines					0.0012502
Main Engine	5,913		Fennica/Nordica main engines					0.0012502
Auxiliary Engine	710		ICE >600 hp AP42	0.01031	0.000000	0.000401	0.000000	0.0012302
Emergency Generator	300		ICE <=600 hp AP42					
Heat Boiler			Boiler <100 mmBtu AP42	0.143	0.0357	0.0236	0.00397	0.02736
Heat Boiler			Boiler <100 mmBtu AP42	0.143	0.0357			
	4.44			0.143	0.0357	0.0236	0.00397	0.02736
Incinerator		N/A	Not Applicable					

				PROJECT T			BY:	
A					Shell Kulluk	(′oung
And Company lives				PROJECT N			PAGE 3	OF 3
AIR SCIENCES INC.					180-15		SHEET 10	
		c	ALCULATIONS	SUBJECT:			DATE:	
A STATE CONTRACTOR				Emiss	sion Factors	s (EF)	12/22	2/2006
Emission Factors (Yr 2008/2009) - co	ntinued							
Jim Kilabuk (resupply vessel)		rating		NOx	со	PM10	VOC	SO2
		unit	EF category		(lb/h	p-hr or lb/m	imBtu)	
Main Engine EMD V20 645	3,600	hp	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Main Engine EMD V20 645	3,600	Hp	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Generator, Cat. D3406	292	Hp	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Generator, Cat. D3406	292	Hp	ICE <=600 hp AP42					
HPP, Cat. D343	300	Hp	ICE <=600 hp AP42					
Bow Thruster Cat. D343	300	Нр	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Kulluk's OSR Fleet		rating		NOx	со	PM10	VOC	SO2
		unit	EF category		(lb/h	p-hr or lb/m	imBtu)	
Engine 1 on OSRV	2,710	Hp	OSRV main engine	0.0146	0.0012	0.00028	0.00163	0.0015371
Engine 2 on OSRV	2,710	Hp	OSRV main engine	0.0146	0.0012	0.00028	0.00163	0.0015371
Generator 1 on OSRV	1,285	Hp	OSRV generator	0.0151	0.0187	0.00089	0.00214	0.0015371
Generator 2 on OSRV	1,285	Hp	OSRV generator					
Emergency generator on OSRV	1,285	Hp	OSRV generator	0.0151	0.0187	0.00089	0.00214	0.0015371
Kvichak 34' work boat #1	300	Hp	Kvic. 34' vessel engine	0.01024	0.000171	0.000169	0.000342	0.0015371
Kvichak 34' work boat #1	300	Hp	Kvic. 34' vessel engine	0.01024	0.000171	0.000169	0.000342	0.0015371
Kvichak 34' work boat #2	300	Hp	Kvic. 34' vessel engine	0.01024	0.000171	0.000169	0.000342	0.0015371
Kvichak 34' work boat #2	300	Hp	Kvic. 34' vessel engine	0.01024	0.000171	0.000169	0.000342	0.0015371
Engine 1 on tug for supply barge	1,500	Нp	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Engine 2 on tug for supply barge	1,500	Hp	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371

<u>.</u>				PROJECT TI	TLE:		BY:	
A					Shell Kullul	<	D. Young	J
Anal.				PROJECT NO			PAGE 1 0)F 3
AIR SCIENCES INC.					180-15		SHEET 11	
	CA	LCULATI	ONS	SUBJECT:			DATE:	
ATH FTG FTGATIANH				Hour	ly Emission	Rate	12/22/2006	3
Hourly Emissions (Yr 2008/2009)								
Kulluk Rig	Rated Cap	acity	NOx	CO	PM10	VOC	SO2	
, C	·	,	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	
Main Engine	2,816	Нр	43.9296	6.7584	1.98528	1.36576	4.3284736	
Main Engine	2,816	Hp	43.9296	6.7584	1.98528	1.36576	4.3284736	
Main Engine	2,816	Hp						
Emergency Generator	920	Hp						
Air Compressor	500	Hp	3.29	2.875	0.1645	3.29	0.76855	
Air Compressor	500	Hp	3.29	2.875	0.1645	3.29	0.76855	
Air Compressor	500	Hp						
HPP Engine	250	Hp	7.75	1.67	0.55	0.6275	0.384275	
HPP Engine	250	Нр	7.75	1.67	0.55	0.6275	0.384275	
Deck Crane	340	Hp	10.54	2.2712	0.748	0.8534	0.522614	
Deck Crane	340	Нр	10.54	2.2712	0.748	0.8534	0.522614	
Deck Crane	340	Нр	10.54	2.2712	0.748	0.8534	0.522614	
Thrustmaster Cat. 3516 B	2,000	Нр	48	11	0.802	1.41	3.0742	
Thrustmaster Cat. 3516 B	2,000	Нр	48	11	0.802	1.41	3.0742	
Anchor Winches		Electric						
Cementing Unit		Electric						
Logging Diesel Winch	140	Нр	4.34	0.9352	0.308	0.3514	0.215194	
Logging Backup Winch Detroit 471	120	Нр						
Heat Boiler	2.4	mmBtu	0.3432	0.08568	0.05664	0.009528	0.065664	
Heat Boiler	2.4	mmBtu						
Hot Water Heat	0.54	mmBtu	0.07722	0.019278	0.012744	0.0021438	0.0147744	
Hot Water Heat	0.54	mmBtu						
Incinerator		N/A						

AIR SCIENCES INC. Hourly Emissions (Yr 2008/2009 Vladimir Ignatjuk Main Engine Main Engine Main Engine Main Engine Main Engine Generator	Rated Capacity 5,800 Hp	ONS NOx lb/hr	PROJECT NC SUBJECT: Emiss	Shell Kullul b: 180-15 sion Factors	•	D. Young PAGE 2 OF SHEET 11 DATE: 12/22/2006
Hourly Emissions (Yr 2008/2009 Vladimir Ignatjuk Main Engine Main Engine Main Engine Main Engine Main Engine Main Engine) - continued Rated Capacity 5,800 Hp	NOx	SUBJECT: Emiss	180-15		SHEET 11 DATE:
Hourly Emissions (Yr 2008/2009 Vladimir Ignatjuk Main Engine Main Engine Main Engine Main Engine Main Engine Main Engine) - continued Rated Capacity 5,800 Hp	NOx	Emis			DATE:
Hourly Emissions (Yr 2008/2009 Vladimir Ignatjuk Main Engine Main Engine Main Engine Main Engine Main Engine) - continued Rated Capacity 5,800 Hp	NOx	Emis	sion Factor		
Hourly Emissions (Yr 2008/2009 Vladimir Ignatjuk Main Engine Main Engine Main Engine Main Engine Main Engine	Rated Capacity 5,800 Hp		<u>.</u>	sion Factors	S(EF)	12/22/2006
Vladimir Ignatjuk Main Engine Main Engine Main Engine Main Engine	Rated Capacity 5,800 Hp		CO			
Main Engine Main Engine Main Engine Main Engine	5,800 Hp		00			
Main Engine Main Engine Main Engine	, ,	lh/hr		PM10	VOC	SO2
Main Engine Main Engine Main Engine	, ,			lb/hr	lb/hr	lb/hr
Main Engine Main Engine		139.2		2.3258	4.089	
Main Engine	5,800 Hp	139.2		2.3258	4.089	8.91518
-	5,800 Hp	139.2		2.3258	4.089	8.91518
	5,800 Hp	139.2		2.3258	4.089	8.91518
	1,431 Hp	34.3392	1.8694	0.573751	1.008714	2.19928268
Generator	1,431 Hp					
Emergency Generator	292 Hp	0.0400	0.00500	0.0500	0.000500	0.00500.4
Heat Boiler	2.4 mmBtu	0.3432		0.05664	0.009528	0.065664
Hot Water Heat	0.54 mmBtu				0.0021438	0.0147744
Incinerator	0.033 ton/hr	0.099	9.9	1.155	3.3	0.0825
Nordica/Fennica (2008-2009)	Rated Capacity	NOx lb/hr		PM10 lb/hr	VOC lb/hr	SO2 Ib/hr
Main Engine	7,884 Hp	149.08644	5.187672	3.161484	5.187672	9.8565768
Main Engine	7,884 Hp	149.08644	5.187672	3.161484	5.187672	9.8565768
Main Engine	5,913 Hp	111.81483	3.890754	2.371113	3.890754	7.3924326
Main Engine	5,913 Hp	111.81483	3.890754	2.371113	3.890754	7.3924326
Auxiliary Engine	710 Hp					
Emergency Generator	300 Hp					
Heat Boiler	4.44 mmBtu	0.634737	0.158462	0.104754	0.0176217	0.12144338
Heat Boiler Incinerator	4.44 mmBtu N/A					0.12144338

			PROJECT TIT	LE:		BY:	_
A				Shell Kulluk		D. Young	
Alternation.			PROJECT NO	:		PAGE 3 OF	3
AIR SCIENCES INC.				180-15		SHEET 11	
	CALCULATIO	ONS	SUBJECT:			DATE:	
DESVES - DETAND			Emiss	ion Factors	(EF)	12/22/2006	
Hourly Emissions (Yr 2008/2009) - continued						
Jim Kilabuk (resupply vessel)	Rated Capacity	NOx	СО	PM10	VOC	SO2	
		lb/hr	-	lb/hr	lb/hr	lb/hr	
Main Engine EMD V20 645	3,600 hp	86.4		1.4436	2.538		
Main Engine EMD V20 645	3,600 Hp	86.4		1.4436	2.538	5.53356	
Generator, Cat. D3406	292 Hp	9.052	1.95056	0.6424	0.73292	0.4488332	
Generator, Cat. D3406	292 Hp						
HPP, Cat. D343	300 Hp						
Bow Thruster Cat. D343	300 Hp	9.3	2.004	0.66	0.753	0.46113	
Kulluk's OSR Fleet	Rated Capacity	NOx lb/hr	CO lb/hr	PM10 lb/hr	VOC lb/hr	SO2 lb/hr	
Engine 1 on OSRV	2,710 Hp	39,566	-	0.7588	4.4173		
Engine 2 on OSRV	2,710 Hp 2,710 Hp	39.566	3.252	0.7588	4.4173	4.165541	
Generator 1 on OSRV	1,285 Hp	19.4035	24.0295	1.14365	2.7499	1.9751735	
Generator 2 on OSRV	1,285 Hp	19.4035	24.0295	1.14305	2.7433	1.9751755	
Emergency generator on OSRV	1,285 Hp	19.4035	24.0295	1.14365	2.7499	1.9751735	
Kvichak 34' work boat #1	300 Hp	3.072		0.0507	0.1026	0.46113	
Kvichak 34' work boat #1	300 Hp	3.072		0.0507	0.1020	0.46113	
Kvichak 34' work boat #1	300 Hp	3.072		0.0507	0.1020	0.46113	
Kvichak 34' work boat #2	300 Hp	3.072		0.0507	0.1020	0.46113	
Engine 1 on tug for supply barge	1,500 Hp	36		0.6015	1.0575		
Engine 2 on tug for supply barge	1,500 Hp	36	8.25	0.6015	1.0575	2.30565	
Engine 2 on tug for supply barge	1,000 110	50	0.20	0.0013	1.0070	2.00000	

						PROJECT TITL			BY:
A								Shell Kulluk	D. Young
Annali.						PROJECT NO:			PAGE 1 OF 1
AIR SCIENCES INC.								180-15	SHEET 12
			CALCUL	ATIONS		SUBJECT:			DATE:
BEDELL HORISON							List of Em	ission Factors (Yr 2008/2009)	12/22/2006
				L	ist of Emis	sion Factors	(Yr 2008/20	09)	
Emissions Unit				mission Facto				Ref	ference
	EF	NOx	CO	PM10	VOC	SO2	SO2^		
	Unit					value x S	0.19 = S		
Air compressors	lb/hp-hr	0.00658	0.00575	0.000329	0.00658	0.0015371	0.00809 S	Tier 3, (planned). 225 to 450kw range. 50	00hp = 373kW: NOx & VOC use
								NOX+NMHC value, CO, & PM. AP42: SC	02.
Boiler <100 mmBtu AP42	lb/mmBtu	0.143	0.0357	0.0236	0.00397	0.02736	0.144 S	AP42 Tbl 1.3-1: NOx, CO, & SO2, Tbls 1	.3-1 & 1.3-2; PM, and Tbl 1.2-3; VOC.
Familia (Nerdian main anairea	lle /le re le re	0.01891	0.000658	0.000401	0.000050	0.0012502	0.00050.0		200 4040 04
Fennica/Nordica main engines	lb/hp-hr	0.01891	0.000658	0.000401	0.000658	0.0012502	0.00658 5	Client provided data: NOx, CO, VOC, & S	502. AP42: PM.
ICE <=600 hp AP42	lb/hp-hr	0.031	0.00668	0.0022	0.00251	0.0015371	0.00809 S	AP42 Tbl 3.3-1, 10/96	
ICE >600 hp AP42	lb/hp-hr	0.024	0.0055	0.000401	0.000705	0.0015371	0.00809 S	AP42 Tbls 3.4-1 & 3.4-2 10/96	
Kulluk main engines (adj.)	lb/hp-hr	0.016	0.0024	0.000705	0.000485	0.0015371	0.00809 S	Spec for CBO Injectors, adjusted by 1.2:	NOx, CO, PM, & VOC. AP42: SO2.
Kvic. 34' vessel engine	lb/hp-hr	0.01024	0.000171	0.000169	0.000342	0.0015371	0.00809 S	Cummins data: NOx, CO, PM10, & VOC.	AP42: SO2.
Not Applicable		0	0	0	0	0			
OSRV generator	lb/hp-hr	0.0151	0.0187	0.00089	0.00214	0.0015371	0.00809 S	Tier 1 2000-2005 (vendor Cat data): NOx	k, CO, PM10, & VOC. AP42: SO2.
OSRV main engine	lb/hp-hr	0.0146	0.0012	0.00028	0.00163	0.0015371	0.00809 S	Client provided Cat data: NOx, CO, PM10	0, & VOC. AP42: SO2.
Shipboard incinerator. AP42	lb/ton	3	300	35	100	2.5		AP42 Tbl 2.1-12, Industrial/commercial ar of four) 10/96.	nd Domestic single chamber (largest fa

				PROJECT TITLE:		BY:		
				Frontier Disco	overer		W. Wooster	
AIR SCIENCES INC.				PROJECT NO:		PAGE 1	OF 1	
an a construct of the		CALCU	LATIONS	180-15 SUBJECT:		SHEET 2 DATE:		
$0 \le 0 \le 1 \le 1 \le 1 \le 0 \le 0 \le 0 \le 0 \le 0 \le $		0/1200	Extribute	Owner Requested L	_imit (ORL)	12/28/	2006	
Shell Kulluk O	wner Request	ed Limit (OR	L) with Nordica/Fennica	- Fleet wide Diesel Fu	uel Consum	otion		
General ORL N	Ox Compliance	Equation:	E _A + E _B + E _C + I	$E_D + E_E$ < 24	45 tons NOx			
VVI	here:		Emissions from Shell Kull	uk	Vessel A			
	E _A = E _B =				Vessel A Vessel B			
	⊏ _в – Е _с =		Emissions from Vladimir I Emissions from Nordica/F	• ,	Vessel B Vessel C			
	E _D =		Emissions from Jim Kilab		Vessel D			
	E _E =		Emissions from Shell Kull		Vessel E			
Specific ORL N	Ox Compliance	Equation:						
$<_{\text{RICE}}*((F_{A1}*EF_{A1}))$)+(F _{A2} *EF _{A2})+(F _B	₁ *EF _{B1})+(F _{C1} *E	EF _{C1})+(F _{E1} *EF _{E1}))+K _{HEAT} *((F	_{A3} *EF _{A3})+(F _{B2} *EF _{B2})+(F _{C2}	₂ *EF _{C2}))+0.6+().1+1.2+2.8 <	< 245 tons	
wh	here							
		000 / 7,000 / 2,			Hp-hr-ton / ga			
		000 / 1,000,00			mmBtu-ton / g	gal-lb		
	F _i =		ption by source group i (gal	ions)				
	EF; =		tor by source group i					
	0.8 tons 0.1 tons		emaining emissions					
	0.6 tons	0	remaining emissions					
	1.6 tons	Jim Kilabuk e	0					
	3.8 tons		maining emissions					
	137,000	Dtu/gallen						
			AP42 diesel fillel heat con	tent				
	7,000	Btu/gallon Btu/hp-hr	AP42 diesel fuel heat con AP42 average brake-spec					
	7,000 2,000	Btu/hp-hr lb/ton	AP42 average brake-spec Conversion factor					
	7,000	Btu/hp-hr	AP42 average brake-spec					
Example Calcul	7,000 2,000 1,000,000	Btu/hp-hr lb/ton Btu/mmBtu	AP42 average brake-spec Conversion factor					
Example Calcul	7,000 2,000 1,000,000	Btu/hp-hr lb/ton Btu/mmBtu	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source	cific fuel consumption		Assumed Di		
·	7,000 2,000 1,000,000	Btu/hp-hr lb/ton Btu/mmBtu	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL	cific fuel consumption		Assumed Di Fuel Consur		
ORL Equation Va	7,000 2,000 1,000,000 lation of NOx Er 'ariables:	Btu/hp-hr lb/ton Btu/mmBtu	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source	cific fuel consumption	o-hr		nption (F)	
ORL Equation Va	7,000 2,000 1,000,000 Iation of NOx Er 'ariables: ing engines	Btu/hp-hr lb/ton Btu/mmBtu	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification	cific fuel consumption NOx Emission Factor (EF)		Fuel Consur 200,000	nption (F)	
CRL Equation Va Sulluk main drilli Sulluk deck cran Sulluk boilers/ho	7,000 2,000 1,000,000 lation of NOx Er ariables: ing engines ne engines ot water heaters	Btu/hp-hr Ib/ton Btu/mmBtu nissions and	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3	NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.143 lb/m	p-hr imBtu	Fuel Consur 200,000 10,000 20,000	nption (F) gallons gallons gallons	
CRL Equation Va Kulluk main drilli Kulluk deck cran Kulluk boilers/ho /I main propulsio	7,000 2,000 1,000,000 lation of NOx Er 'ariables: ing engines he engines by water heaters ion engines/gene	Btu/hp-hr Ib/ton Btu/mmBtu nissions and	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1	NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.143 lb/m 0.024 lb/hp	p-hr imBtu p-hr	Fuel Consur 200,000 10,000 20,000 450,000	nption (F) gallons gallons gallons gallons	
Culluk main drilli Kulluk main drilli Kulluk deck cran Kulluk boilers/ho VI main propulsi VI boiler/hot wate	7,000 2,000 1,000,000 lation of NOx Er 'ariables: 'ariables: ing engines he engines to water heaters ion engines/gene er heater	Btu/hp-hr Ib/ton Btu/mmBtu nissions and	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1 B2	NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.143 lb/m 0.024 lb/hp 0.143 lb/m	p-hr ImBtu p-hr ImBtu	Fuel Consur 200,000 10,000 20,000 450,000 10,000	nption (F) gallons gallons gallons gallons gallons	
ORL Equation Va Kulluk main drilli Kulluk deck cran Kulluk boilers/ho I main propulsi I boiler/hot wate V/F four main pro	7,000 2,000 1,000,000 lation of NOx Er 'ariables: ing engines he engines by water heaters ion engines/gene	Btu/hp-hr Ib/ton Btu/mmBtu nissions and	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1 B2 C1	NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.031 lb/hp 0.143 lb/m 0.024 lb/hp 0.143 lb/m 0.0143 lb/m 0.0189 lb/hp	p-hr ImBtu p-hr ImBtu p-hr	Fuel Consur 200,000 10,000 20,000 450,000 10,000 350,000	nption (F) gallons gallons gallons gallons gallons gallons	
STRL Equation Vi Sulluk main drilli Kulluk deck cran Kulluk boilers/ho VI main propulsio VI boiler/hot wate V/F four main pro V/F two boilers	7,000 2,000 1,000,000 lation of NOx Er 'ariables: 'ariables: ing engines he engines to water heaters ion engines/gene er heater	Btu/hp-hr Ib/ton Btu/mmBtu nissions and	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1 B2	NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.143 lb/m 0.024 lb/hp 0.143 lb/m	p-hr ImBtu p-hr ImBtu p-hr ImBtu	Fuel Consur 200,000 10,000 20,000 450,000 10,000 350,000 20,000	nption (F) gallons gallons gallons gallons gallons	
CAL Equation V Aulluk main drilli Aulluk deck cran Aulluk boilers/ho VI main propulsio VI boiler/hot wate VI/F four main pro- VI/F two boilers Aulluk OSR Flee	7,000 2,000 1,000,000 lation of NOx Er ariables: ing engines the engines to engines to engines/gene ter heater ropulsion engines et - OSRV genera	Btu/hp-hr Ib/ton Btu/mmBtu nissions and	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1 B2 C1 C2	NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.143 lb/hp 0.143 lb/hp 0.143 lb/hp 0.143 lb/m 0.0189 lb/hp 0.143 lb/m	p-hr ImBtu p-hr ImBtu p-hr ImBtu	Fuel Consur 200,000 10,000 20,000 450,000 10,000 350,000 20,000	nption (F) gallons gallons gallons gallons gallons gallons gallons	
CRL Equation Vi Sulluk main drillii Sulluk deck cran Sulluk boilers/ho VI main propulsio VI boiler/hot wate V/F four main pro V/F two boilers Sulluk OSR Flee DRL Equation C	7,000 2,000 1,000,000 lation of NOx Er 'ariables: 'aria	Btu/hp-hr Ib/ton Btu/mmBtu nissions and	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1 B2 C1 C2 E1	NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.143 lb/m 0.143 lb/m 0.143 lb/m 0.143 lb/m 0.0151 lb/hp	p-hr ImBtu p-hr ImBtu p-hr ImBtu	Fuel Consur 200,000 10,000 20,000 450,000 10,000 350,000 20,000	nption (F) gallons gallons gallons gallons gallons gallons gallons	
CRL Equation V Culluk main drilli Culluk deck cran Culluk boilers/ho VI main propulsi VI boiler/hot wate VF four main pro- VF two boilers Culluk OSR Flee DRL Equation C Culluk remaining VI incinerator	7,000 2,000 1,000,000 lation of NOx Er ariables: ariables: aring engines twater heaters on engines/gene er heater ropulsion engines at - OSRV generation constants: g sources	Btu/hp-hr Ib/ton Btu/mmBtu nissions and	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1 B2 C1 C2 E1 Source ID A4 B3	Cific fuel consumption NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.031 lb/hp 0.143 lb/m 0.0143 lb/m 0.0189 lb/hp 0.143 lb/m 0.0151 lb/hp Tons of NOx 0.6 0.1	p-hr ImBtu p-hr ImBtu p-hr ImBtu	Fuel Consur 200,000 10,000 20,000 450,000 10,000 350,000 20,000	nption (F) gallons gallons gallons gallons gallons gallons gallons	
CRL Equation Vi Xulluk main drilli Xulluk deck cran Xulluk boilers/ho VI main propulsi VI boiler/hot wate V/F four main pro V/F two boilers Xulluk OSR Flee DRL Equation C Xulluk remaining VI incinerator Jim Kilabuk sour	7,000 2,000 1,000,000 lation of NOx Er ariables: ing engines the engines to water heaters on engines/gene ter heater ropulsion engines et - OSRV generation constants: g sources rces	Btu/hp-hr Ib/ton Btu/mmBtu nissions and	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1 B2 C1 C2 E1 Source ID A4	NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.143 lb/m 0.024 lb/hp 0.143 lb/m 0.0189 lb/hp 0.143 lb/m 0.0151 lb/hp Tons of NOx 0.6	p-hr ImBtu p-hr ImBtu p-hr ImBtu	Fuel Consur 200,000 10,000 20,000 450,000 10,000 350,000 20,000	nption (F) gallons gallons gallons gallons gallons gallons gallons	
CRL Equation Vi Kulluk main drilli Kulluk deck cran Kulluk boilers/ho VI main propulsie VI boiler/hot wate VI/F four main pro VI/F two boilers Kulluk OSR Flee ORL Equation C Kulluk remaining VI incinerator Jim Kilabuk sour DSR Fleet source	7,000 2,000 1,000,000 lation of NOx Er ariables: ing engines the engines to water heaters on engines/gene ter heater ropulsion engines et - OSRV generation constants: g sources rces	Btu/hp-hr Ib/ton Btu/mmBtu nissions and arators	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1 B2 C1 C2 E1 Source ID A4 B3 D	NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.143 lb/m 0.0143 lb/m 0.0143 lb/m 0.0151 lb/hp Tons of NOx 0.6 0.1 1.2 2.8	p-hr ImBtu p-hr ImBtu p-hr ImBtu p-hr	Fuel Consur 200,000 10,000 20,000 450,000 350,000 20,000 30,000	nption (F) gallons gallons gallons gallons gallons gallons gallons	
ORL Equation Vi Kulluk main drillii Kulluk deck cran Kulluk boilers/ho VI main propulsie VI boiler/hot wate N/F four main pr N/F two boilers Kulluk OSR Flee ORL Equation C Kulluk remaining VI incinerator Jim Kilabuk sour OSR Fleet sourcc Find:	7,000 2,000 1,000,000 lation of NOx Er 'ariables: 'aria	Btu/hp-hr Ib/ton Btu/mmBtu missions and prators stor	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1 B2 C1 C2 E1 Source ID A4 B3 D E2 Vessel Source Identification	NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.143 lb/m 0.024 lb/hp 0.143 lb/m 0.0189 lb/hp 0.143 lb/m 0.0151 lb/hp Tons of NOx 0.6 0.1 1.2 2.8	p-hr imBtu p-hr imBtu p-hr imBtu p-hr value; A2 etc.)	Fuel Consur 200,000 10,000 450,000 10,000 350,000 20,000 30,000	nption (F) gallons gallons gallons gallons gallons gallons gallons gallons	
CRL Equation Vi Kulluk main drillii Kulluk deck cran Kulluk boilers/ho VI main propulsie VI boiler/hot wate VIF four main pro V/F two boilers Kulluk OSR Flee ORL Equation C Kulluk remaining VI incinerator Jim Kilabuk sour OSR Fleet source Find:	7,000 2,000 1,000,000 lation of NOx Er 'ariables: 'aria	Btu/hp-hr Ib/ton Btu/mmBtu nissions and rrators sator (where A1 = 1 hp-hr	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1 B2 C1 C2 E1 Source ID A4 B3 D E2 Vessel Source Identification	NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.143 lb/m 0.0143 lb/m 0.0143 lb/m 0.0151 lb/hp Tons of NOx 0.6 0.1 1.2 2.8	p-hr imBtu p-hr imBtu p-hr imBtu p-hr value; A2 etc.)	Fuel Consur 200,000 10,000 450,000 10,000 350,000 20,000 30,000	nption (F) gallons gallons gallons gallons gallons gallons gallons gallons	
CRL Equation Vi Kulluk main drillii Kulluk deck cran Kulluk boilers/ho VI main propulsie VI boiler/hot wate VIF fuor main pro V/F two boilers Kulluk OSR Flee ORL Equation C Kulluk remaining VI incinerator Jim Kilabuk sour OSR Fleet sourcc Find:	7,000 2,000 1,000,000 lation of NOx Er ariables: ing engines the engines to water heaters on engines/gene ter heater ropulsion engines et - OSRV generation constants: g sources rces ces > <u>137,000 Btu</u> gallon	Btu/hp-hr Ib/ton Btu/mmBtu missions and rators ator (where A1 = 1 hp-hr 7,000 Btu	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1 B2 C1 C2 E1 Source ID A4 B3 D E2 Vessel Source Identification 1000 lb	NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.143 lb/m 0.024 lb/hp 0.143 lb/m 0.0189 lb/hp 0.143 lb/m 0.0151 lb/hp 0.143 lb/m 0.0151 lb/hp Tons of NOx 0.6 0.1 1.2 2.8 PEF x fuel consumption v ((F _{A1} *EF _{A1})+(F _{A2} *EF _{A2})	o-hr ImBtu o-hr ImBtu o-hr ImBtu o-hr value; A2 etc.)	Fuel Consur 200,000 10,000 20,000 350,000 20,000 30,000 F _{C1} *EF _{C1})+(F	nption (F) gallons gallons gallons gallons gallons gallons gallons gallons	
DRL Equation Va Kulluk main drillii Kulluk deck cran Kulluk boilers/ho /I main propulsie /I boiler/hot wate // F two boilers Kulluk OSR Flee DRL Equation C Kulluk remaining /I incinerator lim Kilabuk sour DSR Fleet source Find:	7,000 2,000 1,000,000 lation of NOx Er ariables: ing engines the engines to water heaters on engines/gene ter heater ropulsion engines et - OSRV generation constants: g sources rces ces > <u>137,000 Btu</u> gallon + <u>137,000 Btu</u>	Btu/hp-hr Ib/ton Btu/mmBtu missions and ator (where A1 = 1 hp-hr 7,000 Btu mmBtu	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1 B2 C1 C2 E1 Source ID A4 B3 D E2 Vessel Source Identification ton x	NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.143 lb/m 0.024 lb/hp 0.143 lb/m 0.0189 lb/hp 0.143 lb/m 0.0151 lb/hp Tons of NOx 0.6 0.1 1.2 2.8	o-hr ImBtu o-hr ImBtu o-hr ImBtu o-hr value; A2 etc.)	Fuel Consur 200,000 10,000 20,000 350,000 20,000 30,000 F _{C1} *EF _{C1})+(F	nption (F) gallons gallons gallons gallons gallons gallons gallons gallons te1*EF _{E1}))	
DRL Equation Va Kulluk main drillii Kulluk deck cran Kulluk boilers/ho /I main propulsio /I boiler/hot wate J/F two boilers Kulluk OSR Flee DRL Equation Co Kulluk remaining /I incinerator Iim Kilabuk sour DSR Fleet source Find: s 245.0 tons	7,000 2,000 1,000,000 lation of NOx Er ariables: ing engines the engines to water heaters on engines/gene ter heater ropulsion engines et - OSRV generation constants: g sources rces ces > <u>137,000 Btu</u> gallon	Btu/hp-hr Ib/ton Btu/mmBtu missions and rators ator (where A1 = 7 hp-hr 7,000 Btu mmBtu 10^6 Btu	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1 B2 C1 C2 E1 Source ID A4 B3 D E2 Vessel Source Identification 1000 lb	NOx Emission Factor (EF) 0.0156 lb/hp 0.031 lb/hp 0.143 lb/m 0.024 lb/hp 0.143 lb/m 0.0189 lb/hp 0.143 lb/m 0.0151 lb/hp 0.143 lb/m 0.0151 lb/hp Tons of NOx 0.6 0.1 1.2 2.8 PEF x fuel consumption v ((F _{A1} *EF _{A1})+(F _{A2} *EF _{A2})	o-hr ImBtu o-hr ImBtu o-hr ImBtu o-hr value; A2 etc.)	Fuel Consur 200,000 10,000 20,000 350,000 20,000 30,000 F _{C1} *EF _{C1})+(F	nption (F) gallons gallons gallons gallons gallons gallons gallons gallons	
DRL Equation Va Kulluk main drillii Kulluk deck cran Kulluk boilers/ho /I main propulsie /I boiler/hot wate // Four main prr // Ftwo boilers Kulluk OSR Flee DRL Equation C Kulluk remaining /I incinerator lim Kilabuk sour DSR Fleet source Find: s 245.0 tons	7,000 2,000 1,000,000 lation of NOx Er 'ariables: ing engines the engines to engines/gene ter heater ropulsion engines/gene ter heater opulsion engines/gene ter heater constants: g sources constants: g sources trees ces > <u>137,000 Btu</u> gallon greater than 213	Btu/hp-hr Ib/ton Btu/mmBtu missions and rators sator (where A1 = ⁻¹ hp-hr 7,000 Btu mmBtu 10^6 Btu 3.7 tons NOx	AP42 average brake-spec Conversion factor Conversion factor Comparison with ORL Vessel Source Identification A1 A2 A3 B1 B2 C1 C2 E1 Source ID A4 B3 D E2 Vessel Source Identification ton x	cific fuel consumption NOx Emission Factor (EF) 0.0156 lb/ng 0.031 lb/ng 0.143 lb/m 0.024 lb/ng 0.143 lb/m 0.0189 lb/hg 0.143 lb/m 0.0151 lb/hg Tons of NOx 0.6 0.1 1.2 2.8 9 EF x fuel consumption v $((F_{A3}*EF_{A3})+(F_{B2}*EF_{B2})$	o-hr ImBtu o-hr ImBtu o-hr ImBtu o-hr value; A2 etc.)	Fuel Consur 200,000 10,000 20,000 350,000 20,000 30,000 F _{C1} *EF _{C1})+(F	nption (F) gallons gallons gallons gallons gallons gallons gallons gallons te1*EF _{E1}))	

					PROJECT TITLE:	BY:
A					Shell Kulluk	D. Young
AIR SCIENCES INC.					PROJECT NO:	PAGE 1 OF 2
NIK SCIENCES INC.					180-15	SHEET 13
B10013-10001000	CA	LCULATIONS			SUBJECT:	DATE:
					HAPs	12/12/2006
HAZARDOUS AIR POLLUTA To simplify the estimate of em each set of emission factors. HAPs - Fuel Oil Combustion The estimated maximum amo	nission; a yearly fuel use n; Engines	e value is set at	a more	than the pr	oposed total fuel use limita	tion and conservatively applie f heat input:
2,000,000 gallons	137,000 Btu*	MMBtu	=	274,000	MMBtu/Yr	
year *AP-42 Appendix A, Diesel he	U U	,000,000 Btu				
The estimated HAP emissions	s from IC engines with >	•600 hp output:				
	Emission Factor		Emis	sions		
HAP	lb/MMBtu*	1	b/yr	ton/yr		
Benzene	7.76E-04		212.6	0.106		
Toluene	2.81E-04		77.0	0.038		
Xylenes	1.93E-04		52.9	0.026		
Formaldehyde	7.89E-05		21.6	0.011		
Acetaldehyde	2.52E-05		6.9	0.003		
Acrolein	7.88E-06		2.2	0.001		
Naphthalene	1.30E-04		35.6	0.018		
Total PAH**	8.20E-05		00 5	0.011		
			22.5	0.011		
		naphthalene.	22.5	0.216		
**Emission factor excludes the	e already accounted for		=	0.216	ss than 600 hp, expressed	in units of heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amo 2,000,000 gallons	e already accounted for		=	0.216 Jual to or lea	ss than 600 hp, expressed MMBtu/Yr	in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year	e already accounted for ount of diesel fuel combu <u>137,000 Btu*</u> gallons <u>1</u>	usted by the eng	gines eq	0.216 Jual to or lea		in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he	e already accounted for ount of diesel fuel combu <u>137,000 Btu*</u> gallons <u>1</u> eating value, 9/85.	Isted by the eng MMBtu 000,000 Btu	gines eq	0.216 Jual to or lea		in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he	e already accounted for ount of diesel fuel combu 137,000 Btu* gallons 1 eating value, 9/85. s from IC engines with <u>-</u>	Isted by the eng MMBtu 000,000 Btu	jines eq =	0.216 Jual to or le: 274,000		in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions	e already accounted for ount of diesel fuel combu <u>137,000 Btu*</u> gallons 1 ating value, 9/85. s from IC engines with <u>4</u> Emission Factor	MMBtu 000,000 Btu 600 hp output:	jines eq = Emis	0.216 jual to or le: 274,000 ssions		in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u>	e already accounted for ount of diesel fuel combu <u>137,000 Btu*</u> gallons 1 eating value, 9/85. s from IC engines with <u>s</u> Emission Factor <u>Ib/MMBtu*</u>	MMBtu MMBtu 000,000 Btu 600 hp output:	jines eq = Emis <u>b/yr</u>	0.216 jual to or le: 274,000 ssions <u>ton/yr</u>		in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene	e already accounted for ount of diesel fuel combu gallons 1 acting value, 9/85. s from IC engines with <u>s</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04	MMBtu 000,000 Btu 600 hp output:	= = Emis <u>b/yr</u> 255.6	0.216 jual to or le: 274,000 ssions <u>ton/yr</u> 0.1278		in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene	e already accounted for ount of diesel fuel combu gallons 1 eating value, 9/85. s from IC engines with <u>s</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04	MMBtu 000,000 Btu 600 hp output:	gines eq = <u>Emis</u> <u>b/yr</u> 255.6 112.1	0.216 Jual to or les 274,000 ssions <u>ton/yr</u> 0.1278 0.0560		in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes	e already accounted for ount of diesel fuel combut gallons 1 eating value, 9/85. s from IC engines with <u>s</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04	MMBtu 000,000 Btu 600 hp output:	jines eq = <u>Emis</u> <u>b/yr</u> 255.6 112.1 78.1	0.216 Jual to or les 274,000 ssions <u>ton/yr</u> 0.1278 0.0560 0.0390		in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene	e already accounted for sount of diesel fuel combut 137,000 Btu* gallons 1 eating value, 9/85. s from IC engines with <u>s</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.58E-03	MMBtu 000,000 Btu 600 hp output:	jines eq = <u>Emis</u> <u>b/yr</u> 255.6 112.1 78.1 706.9	0.216 Jual to or les 274,000 ssions <u>ton/yr</u> 0.1278 0.0560 0.0390 0.3535		in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene	e already accounted for sount of diesel fuel combut allons 1 gallons 1 eating value, 9/85. s from IC engines with <u>source</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.58E-03 3.91E-05	MMBtu MMBtu 000,000 Btu 600 hp output:	jines eq = Emis <u>b/yr</u> 255.6 112.1 78.1 706.9 10.7	0.216 Jual to or les 274,000 ssions <u>ton/yr</u> 0.1278 0.0560 0.0390 0.3535 0.0054		in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde	e already accounted for sunt of diesel fuel combu- 137,000 Btu* gallons 1 ating value, 9/85. s from IC engines with ≤ Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.58E-03 3.91E-05 1.18E-03	MMBtu MMBtu 000,000 Btu 600 hp output:	jines eq = <u>Emis</u> <u>b/yr</u> 255.6 112.1 78.1 78.1 706.9 10.7 323.3	0.216 Jual to or les 274,000 ssions <u>ton/yr</u> 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617		in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde	e already accounted for ount of diesel fuel combu- gallons 1 gallons 1 ating value, 9/85. s from IC engines with <u>e</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.85E-04 3.91E-05 1.18E-03 7.67E-04	MMBtu MMBtu 000,000 Btu 600 hp output:	jines eq = Emis <u>b/yr</u> 255.6 112.1 78.1 78.1 78.0 9 10.7 323.3 210.2	0.216 ual to or les 274,000 ssions <u>ton/yr</u> 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051		in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Acetaldehyde Acetaldehyde Acrolein	e already accounted for punt of diesel fuel combu- 137,000 Btu* gallons 1 eating value, 9/85. s from IC engines with <u>s</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.58E-03 3.91E-05 1.18E-03 7.67E-04 9.25E-05	MMBtu MMBtu 000,000 Btu 600 hp output:	jines eq = Emis <u>b/yr</u> 255.6 112.1 78.1 706.9 10.7 323.3 210.2 25.3	0.216 ual to or les 274,000 ssions <u>ton/yr</u> 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127		in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Acctaldehyde Acrolein Naphthalene	e already accounted for sount of diesel fuel combut 137,000 Btu* gallons 1 eating value, 9/85. s from IC engines with <u>s</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.58E-03 3.91E-05 1.18E-03 7.67E-04 9.25E-05 8.48E-05	MMBtu MMBtu 000,000 Btu 600 hp output:	gines eq = Emis <u>b/vr</u> 255.6 112.1 78.1 706.9 10.7 323.3 2210.2 25.3 23.2	0.216 ual to or les 274,000 ssions <u>ton/yr</u> 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127 0.0116	MMBtu/Yr	in units of heat input:
**Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions	e already accounted for punt of diesel fuel combu- 137,000 Btu* gallons 1 eating value, 9/85. s from IC engines with <u>s</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.58E-03 3.91E-05 1.18E-03 7.67E-04 9.25E-05	MMBtu MMBtu 000,000 Btu 600 hp output:	jines eq = Emis <u>b/yr</u> 255.6 112.1 78.1 706.9 10.7 323.3 210.2 25.3	0.216 ual to or les 274,000 ssions ton/yr 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127 0.0116 0.0114	MMBtu/Yr	in units of heat input:
Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Accelaldehyde Acrolein Naphthalene Total PAH	e already accounted for sount of diesel fuel combu- 137,000 Btu* gallons 1 acting value, 9/85. s from IC engines with <u>s</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.58E-03 3.91E-05 1.18E-03 7.67E-04 9.25E-05 8.48E-05 8.32E-05	MMBtu MMBtu 000,000 Btu 600 hp output:	gines eq = Emis <u>b/vr</u> 255.6 112.1 78.1 706.9 10.7 323.3 2210.2 25.3 23.2	0.216 ual to or les 274,000 ssions <u>ton/yr</u> 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127 0.0116	MMBtu/Yr	in units of heat input:
Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Acceladehyde Acceladehyde Accolein Naphthalene Total PAH *AP-42, Stationary IC sources	e already accounted for sunt of diesel fuel combu- 137,000 Btu* gallons 1 ating value, 9/85. s from IC engines with <u>s</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.85E-04 2.85E-04 2.58E-03 3.91E-05 1.18E-03 7.67E-04 9.25E-05 8.48E-05 8.32E-05 s, Table 3.3-2.	Insted by the eng MMBtu 000,000 Btu 600 hp output:	gines eq = Emis <u>b/vr</u> 255.6 112.1 78.1 706.9 10.7 323.3 2210.2 25.3 23.2	0.216 ual to or les 274,000 ssions ton/yr 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127 0.0116 0.0114	MMBtu/Yr	in units of heat input:
Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Accelaldehyde Acrolein Naphthalene Total PAH	e already accounted for sunt of diesel fuel combu- 137,000 Btu* gallons 1 ating value, 9/85. s from IC engines with <u>s</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.85E-04 2.85E-04 2.58E-03 3.91E-05 1.18E-03 7.67E-04 9.25E-05 8.48E-05 8.32E-05 s, Table 3.3-2.	Insted by the eng MMBtu 000,000 Btu 600 hp output:	gines eq = Emis <u>b/vr</u> 255.6 112.1 78.1 706.9 10.7 323.3 2210.2 25.3 23.2	0.216 ual to or les 274,000 ssions ton/yr 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127 0.0116 0.0114	MMBtu/Yr	in units of heat input:
Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Acetaldehyde Actolein Naphthalene Total PAH *AP-42, Stationary IC sources	e already accounted for sunt of diesel fuel combu- 137,000 Btu* gallons 1 ating value, 9/85. s from IC engines with <u>s</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.85E-04 2.85E-04 2.58E-03 3.91E-05 1.18E-03 7.67E-04 9.25E-05 8.48E-05 8.32E-05 s, Table 3.3-2.	Insted by the eng MMBtu 000,000 Btu 600 hp output:	gines eq = Emis <u>b/vr</u> 255.6 112.1 78.1 706.9 10.7 323.3 2210.2 25.3 23.2	0.216 ual to or les 274,000 ssions ton/yr 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127 0.0116 0.0114	MMBtu/Yr	in units of heat input:
Emission factor excludes the The estimated maximum amo 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Acetaldehyde Actolein Naphthalene Total PAH *AP-42, Stationary IC sources	e already accounted for sunt of diesel fuel combu- 137,000 Btu* gallons 1 ating value, 9/85. s from IC engines with <u>s</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.85E-04 2.85E-04 2.58E-03 3.91E-05 1.18E-03 7.67E-04 9.25E-05 8.48E-05 8.32E-05 s, Table 3.3-2.	Insted by the eng MMBtu 000,000 Btu 600 hp output:	gines eq = Emis <u>b/vr</u> 255.6 112.1 78.1 706.9 10.7 323.3 2210.2 25.3 23.2	0.216 ual to or les 274,000 ssions ton/yr 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127 0.0116 0.0114	MMBtu/Yr	in units of heat input:

					PROJECT TITLE:	BY:
					Shell Kulluk	D. Young
					PROJECT NO:	PAGE 2 OF 2
AIR SCIENCES INC.					180-15	SHEET 13
	(ALCULATION	S		SUBJECT:	DATE:
104 9 5 4 0 × 10 × 100 T + 100					HAPs	12/12/2006
HAZARDOUS AIR POLLUT	ANTS (HAPs), as def	ined pursuant t	to Section	n 112(b) of	the Clean Air Act - contin	ued
HAPs - Fuel Oil Combustion The estimated maximum and		busted by boile	rs, expres	sed in units	s of heat input:	
2,000,000 gallons		MMBtu	=	274,000	MMBtu/Yr	
year *AP-42 Appendix A, Diesel h	gallons neating value, 9/85.	1,000,000 Btu				
The estimated HAP emissio	ns from boilers:					
	Emission Factor		Emis	ssions		
HAP	<u>lb/1000 gal*</u>		lb/yr	ton/yr		
POM	3.30E-03		6.6	0.0033		
Formaldehyde	6.10E-02		122.0	0.0610		
	Ib/10 ¹² Btu**					
Arsenic	4		1.1	0.00055		
Beryllium	3		0.8	0.00041		
Cadmium	3		0.8	0.00041		
Chromium	3		0.8	0.00041		
Lead	9		2.5	0.00123		
Mercury	3		0.8	0.00041		
Manganese	6		1.6	0.00082		
Nickel	3		0.8	0.00041		
Selenium	15		4.1	0.00206		
			-	0.071	=	
*AP-42, External Combustio **AP-42, External Combustio						
			1APs - Si	Immany		

Shell Kulluk Main Drilling Engines Emission Factors

Kulluk Prime Mover Emissions Performance of Several Injector Alternatives

Assumptions:

- 1. Information from Dave Panting Letter of 4/19, email of 5/16
- 2. CBOI injectors increase the amount of visible smoke at less than 100 percent load.
- 3. Units are grams/BHP/Hr

25%

0.44

Load Range	PM	NOx	со	НС
Original Configu	ation			
100%	0.27	11.00	1.66	0.18
75%	0.30	13.66	0.18	0.23
50%	0.37	13.99	0.16	0.33
25%	0.44	15.21	0.49	0.70
1993 Modificatio	on (Current	Performanc	e)	
100%	0.30	7.70	1.83	0.20
75%	0.33	9.56	0.20	0.25
50%	0.41	9.79	0.18	0.36
25%	0.48	10.65	0.54	0.77
CBOI Injectors				
100%	0.27	5.90	0.91	0.18
75%	0.30	6.30	0.33	0.20
50%	0.37	7.49	0.22	0.37

9.99

0.52

0.76

Tor Viking II Engines Emission Factors

1(4)

Report No.M1898004 / 00-02 Emission measurements on board MV Tor Viking II - Havyard Leirvik NB 282.

Summary

The vessel is fitted with catalytic exhaust emission control, (ABB SCR Converter System) on all main- and auxiliary engines with following configuration:

Engine No	Engine Type	Location
ME 1	MaK 6M32	Starboard outer
ME 2	MaK 8M32	Starboard inner
ME 3	MaK 8M32	Port inner
ME 4	MaK 6M32	Port outer
AE 1	Caterpillar 3412	Starboard
AE 2	Caterpillar 3412	Port

The system consist of a SCR (Selective Catalytic Reduction) stage for NO_x reduction, and an Oxidation stage for reduction of un-completely burned fuel species such as CO, HC and Soot. The SCR stage use Urea as reagent.

The contractor carried out emission measurement during commissioning period at shiyard (2000-02-10) and at sea trials (2000-02-18). A summary of the results is presented in the table below.

Chemical species	Sort	ME 1 & 4	ME 2 & 3	AE	Comment
NO _x after SCR	g/kWh	1,2	1,8	1,4	Minimum
Reduction of CO	%	35	36	89	See comment below
Ammonium slip	ppm	< 2	< 2	< 2	
Urea consumption	l/h	29	40	5,4	At 3,0 g/kWh NO _x emission

Comments:

- This summary shows minimum measured NO_x level after SCR. During commissioning the plant was finally adjusted according detailed tables below. It is possible to adjust the plant to achive NO_x reduction down to above minimum values.
- 2. CO reduction for main engines is low due to very low CO content before SCR. Compare wit AE values.
- 3. Exhaust temperature from main engines are very low and close to lower limit for urea injection. This means risk for HC accumulation which may lead to rising pressure drop and loss of efficiency of the installation.
- 4. Ammonium slip was below detection limit, 2 ppm.

ABB Fläkt Marine AB

							Ì
Postal Address ABB Fläkt Marine AB P.O. Box 1043 S-436 21 ASKIM Sweden	Street Address Ekonomivägen 3-5 ASKIM Gothenburg	<u>National</u> International	Telephone 031-709 22 00 +46 31 709 22 00	Telefax <u>031-28 42 89</u> +46 31 28 42 89	Bank Giro Account 240-7641 Postal Giro Account 2585 42-0	Bank SE Banken, Stockholm Account 5037-1193567 Swift Address Swift Address	

Instrumentation

Portable exhaust emission analysers were used according to specification below. The instruments were calibrated with span gas before the measurements started. Zero calibration was carried out between every measuring cycle.

Make	Туре	Parameters	Range	Accuracy	Method
ECOM	KD	O ₂	0-21 %	± 0,1%	Electrochemical
		CO	0-4000 ppm	± 16 ppm	Electrochemical
		NO	0-2000 ppm	± 8 ppm	Electrochemical
		NO ₂	0-200 ppm	± 10 ppm	Electrochemical
		Soot	0-10	± 0,5	Visual
			Bacharach		
Testo	300M	O ₂	0-21 %	± 0,2 %	Electrochemical
		CO	0-3000 ppm	± 20 ppm	Electrochemical
		NO	0-3000 ppm	-100 ppm: ± 5ppm	Electrochemical
				-2000 ppm: ± 5 %	
Dräger	accuro	NH₃	2-30 ppm	± 15%	Chemical / Visual

ABB Fläkt Marine AB

Results for the Main Engine SCR Converter System

Detailed measurements were carried out for one of the main engine of each type. Check values from the other engines showed similar results.

Date for tests	2000-02-18					
Ship	Kvaerner Leirvik, NB 282					
Fuel	Gas Oil, 0,1%	Sulphur			· ·	
·····		ME 1	ME 2	ME 3	ME 4	
Load	%	84	83	80	82	
Speed	rpm	600	600	600	600	
Diff. Pressure	kPa	0,6	0,5	0,5	0,4	
		, ·	· · ·	-		
Measured emission	ons					
	Before SCR					
NO _x	ppm	795	812	831	881	
CO	ppm	44	48	49	43	
Exhaust temp	°C	268	274	281	290	
· · ·	After SCR					
NO _x	ppm	244	210	255	239	
CO	ppm	28	31	31	29	
Ammonia slip	ppm	< 2	< 2	< 2	< 2	
Exhaust temp	°C	264	268	262	268	
Urea flow, 40%	l/h	28,0	38,5	42,0	30,5	
			· · · ·			
Calculated emiss						
Adjusted values NO _x	g / kWh	2,8	3,1	3,8	2,8	
Minimum values NO _x	g / kWh	1,2	1,8	1,8	1,2	
CO reduction	%	36	35	37	33	

Results for the Auxiliary Engine SCR Converter System

Detailed measurements were carried out for one of the auxiliary engines only. Check values from the other engine showed similar results.

Date for tests	2000-02-10	~						
	Kvaerner Leirvik, NB 282							
Ship								
Fuel	<u>G</u> as Oil, 0,1%	Sulphur	·					
		AE 1	AE 2					
Load	%	75	75					
Speed	rpm	1500	1500					
Diff. Pressure	kPa	0,6	0,5					
Measured emissions								
	Before SCR	·	1000					
NO _x	ppm	1502	1320					
CO	ppm	266	392					
Exhaust temp	°C	366	364					
	After SCR							
NO _x	ppm	250	230					
со	ppm	35	36					
Ammonia slip	ppm	< 2	< 2					
Exhaust temp	°C	365	348					
Urea flow, 40%]/h	5,5	5,3					
Calculated emissions								
Adjusted values NO _x	g / kWh	2,3	2,1					
Minimum values NO _x	g / kWh	1,4	1,4					
CO reduction	%	87	91					

/end of document

ABB Fläkt Marine AB

ABB

4(4)

2000-02-15 / CA

ABB SCR ConverterTM System

ABB project no M1898004

Test protocol

Yard Kvaerner Leirvik NB 282 Name Tor Viking Owner B&N Viking AS

		ME 1	ME 2	ME 3	ME 4	AE 1	AE 2
Type of engine		MaK 6M32	MaK 8M32	MaK 8M32	MaK 6M32	Caterpillar 3412	Caterpillar 3412
Power at 100% MCR	Υ.Υ.	2 880	3 840	3 840	2 880	430	430
Engine load	%	64	83	80	82	75	25
NO _x before converter	mdd	795	812	831	891	/502	1320
NO _x after converter	bpm	244	210	255	239	250	230
Urea consumption	ч <i>/</i> I	28	30.5	42	30,5	5,5	5,3
CO before converter	udd	44	<i>4b</i>	67	43	266	392
CO after converter	mqq	28	31	31	29	35	36
Ammonium slip actual	шdd	0	0	0	0	0	0
	Test date	00-02-10	00-02-18	00-02-18	00-05-18	00-05-10	00-02+10
Owner / Shipyard representative	entative	-18/1M	A F	- ANA	. MANNE	NOV SP	My SZ
ABB representative	Ð	Cur huc	Chir Mar	an huy	Cei Miet	Cer. Aut	Cur hur
Restricted use-this document may hot be reproduced, transferred to third	halh'u ک oduced, transferre]. Cudour	7. Codaw	7. Codrey	7. Cadeur		
party or used unauthorized in any manner. Failure to comply with these restrictions will render prosecution to prevailing law. Asea Brown Bowery.	lure to comply with g law. Asea Brown	h these I Bowery.	Test_values.xls	sis		K	Primary values

		PROJECT TITLE:	BY:
A	Air Sciences Inc.	OCS - Beaufort Sea	D. Young
Alternation.		PROJECT NO:	PAGE 1 OF 2
AIR SCIENCES INC.		180-15	SHEET 0
	CALCULATIONS	SUBJECT:	DATE:
25 E 16 F E R. + 712 R F L 4 16 13		Tor Viking II	10/18/2006
Review emissions	control for CO and NOx, and cal	culate NOx emission fact	cors ("EF")
<u>Main Engin</u>	es ("ME") Emissions Reduction	Deference	
SCR for NC)x control	<u>Referance</u> (1)	
	Catalyst for CO, HC and soot control.	(1)	
		(1)	
N	IOx - PPM		
N	IE1 ME4 ME2 ME3		
	1aK 6M32 MaK 6M32 MaK 8M32 MaK 8M32	(1)	
Before - Control	795 881 812 831	(1)	
After - Control	244 239 210 255		
NOx Reduction (%)	69% 73% 74% 69%	1	
	CO - PPM		
	AE1 ME4 ME2 ME3		
Before - Control	4 43 48 49	(1)	
After - Control	28 29 31 31	(1)	
CO Reduction (%)	36% 33% 35% 37%		
		1	
NOx Emiss	ions post control		
	NE1 ME4 ME2 ME3	1	
g/kwh	2.8 2.8 3.1 3.8		es"
	0.00617 0.00617 0.00683 0.00838	• • • •	
	0.0046 0.0046 0.0051 0.00625		
	0.00460 0.00460 0.00510 0.00625 2.8 2.8 3.1 3.8	Round to 5	
EF to g/kwh Delta %	-0.07% -0.07% 0.07% 0.05%	4	ta < +0.25%
Deita 70	-0.07 /0 -0.07 /0 0.07 /0 0.03 /0		la <u>-</u> 0.2070.
NOx Emiss	ions pre-control		
	IE1 ME4 ME2 ME3		
EF lb/hp-h	0.00460 0.00460 0.00510 0.00625	From above calcul	ation.
NOx Reduction %	69% 73% 74% 69%	4	ation
EF lb/hp-h (pre-SCR)	0.015 0.017 0.020 0.020		
Referance(s)	5 0000 and a long to the	0	
(1) ABB Feb 28	5 2000, emissions test summary report.	Commreport282.pdf	
(2) 453.6 g	//b		
(2) 453.6 g (3) 1.341 h			

		PROJECT TITLE:	BY:
A	Air Sciences Inc.	OCS - Beaufort Sea	D. Young
Auto Southeast Into		PROJECT NO:	PAGE 2 OF 2
AIR SCIENCES INC.		180-15	SHEET 0
00000000000000	CALCULATIONS	SUBJECT:	DATE:
DENVER + PORTLAND		Tor Viking II	10/18/2006
<u>Auxiliary E</u>	ngines ("AE") Emissions Reduction		
		<u>Referance</u>	
SCR for NO		(1)	
Oxidation (Catalyst for CO, HC and soot control.	(1)	
	NOx - PPM AE1 AE2 Cat 3412 Cat 3412 1502 1320 250 230 83% 83%	(1) (1) (1)	
	CO - PPM AE1 AE2 266 392 35 36 87% 91%	(1) (1)	
/ g/kwh lb/kwh lb/hp-h	sions post control AE1 AE2 2.3 2.1 0.00507 0.00463 0.00378 0.00345 0.00378 0.00345 2.3 2.1 -0.03% -0.07%	(1) "Adjusted value (2) (3) <i>Round to</i> 5 To use EF the Del ^a	
	sions pre-control AE1 AE2 0.00378 0.00345 83% 83% 0.023 0.020	From above calcul From above calcul	

Fennica/Nordica Main Engines Emission Factors

-----Original Message-----From: Niemelä Helena [mailto:Helena.Niemela@finstaship.fi] Sent: Wednesday, October 25, 2006 10:33 AM To: Craik, Keith KM SIEP-EPW Cc: Power, Alan T SEPCO; Kondratjeff Peter Subject: Emissions

Keith,

I trust you have already received this report of Viking's and the information about Fennica's emissions, but I'm still sending them just in case.

Emissions

Engine loads	100 %	75 %	50 %
$No_x [g/kWh]$	11,5	12	11,5
CO [g/kWh]	0,4	0,45	0,6
THC as CH ₄ [g/kWh]	0,4	0,6	0,8
CO ₂ [g/kWh]	620	620	645
SO ₂ [g/kWh]*	2	2	2
* Sulphur content of fuel is 0	50/		

* Sulphur content of fuel is 0,5%

Could you please tell me if you have some sort of a plan concerning the emission minimizing in any way? Could you in any way prioritise the emissions? This would help us in order to plan and inquire more information about any possible modifications or installations etc to Fennica.

Regards, Helena

Helena Niemelä FINSTASHIP / Offshore e-mail: <u>helena.niemela@finstaship.fi</u> tel. +358 306 20 7108 mob. +358 46 876 7108

OSRV Main Engines Emission Factors

3608

DIESEL ENGINE TECHNICAL DATA

CATERPILLAR®

Marine		RATING: Industrial	10/11/2006
ENGINE SPEED (rpm):	1000	TURBOCHARGER PART #:	194-8722
COMPRESSION RATIO:	13:1	FUEL TYPE:	Distillate
AFTERCOOLER WATER (°C):	50		
JACKET WATER OUTLET (°C):	90		
IGNITION SYSTEM:	MUI		
EXHAUST MANIFOLD:	DRY		

RATING		NOTES	LOAD		100%	75%	50%
ENGINE POWER		(2)	bkW		2710	2033	1355
ENGINE DATA							
FUEL CONSUMPTION	(ISO 3046/1)	(1)	g/bkw-hr		198.7	197.6	206.2
FUEL CONSUMPTION	(NOMINAL)	(1)	g/bkw-hr		202.5	201.4	210.2
FUEL CONSUMPTION	(90% CONFIDENCE)	(1)	g/bkw-hr		204.7	203.9	213.0
AIR FLOW (@ 25°C, 101.3 kPaa)			Nm3/min		297.6	236.5	164.7
AIR MASS FLOW			kg/hr		19921	15826	11020
COMPRESSOR OUTLET PRESSURE			kPa (abs)		280.8	199.6	110.3
COMPRESSOR OUTLET TEMPERATURE			°C		196.9	157.9	110.0
INLET MANIFOLD PRESSURE			kPa (abs)		277.0	196.9	108.8
INLET MANIFOLD TEMPERATURE			°C		45.9	43.2	42.3
TIMING		(9)	°BTDC		12.5	12.5	12.5
EXHAUST STACK TEMPERATURE			°C		370.9	354.4	371.9
Catsmoke					0.0068	0.0100	0.0178
EXHAUST GAS MASS FLOW			kg/hr		20473	16237	11304
EMISSIONS]						
NOx (as NO)		(3)	g/bkW-hr		8.88	9.65	10.55
CO		(3)	g/bkW-hr		0.73	0.65	0.88
THC (molecular weight of 13.018)		(3)	g/bkW-hr		0.99	1.26	1.51
Particulates		(3)	g/bkW-hr		0.17	0.20	0.25
]						
			1011	n			
FUEL INPUT ENERGY (LHV)	(NOMINAL)	(1)	KW		6566	4883	3390
HEAT REJ. TO JACKET WATER	(NOMINAL)	(4)	KW		539	440	343
HEAT REJ. TO ATMOSPHERE	(NOMINAL)	(5)	KW		131	98	68
HEAT REJ. TO OIL COOLER	(NOMINAL)	(6)	KW		285	251	218
HEAT REJ. TO EXH. (LHV to 25°C)	(NOMINAL)	(4)	KW		2082	1575	1186
HEAT REJ. TO EXH. (LHV to 177°C)	(NOMINAL)	(4)	KW		1632	1349	925
HEAT REJ. TO AFTERCOOLER	(NOMINAL)	(7) (8)	KW		800	479	218

CONDITIONS AND DEFINITIONS

ENGINE RATING OBTAINED AND PRESENTED IN ACCORDANCE WITH ISO 3046/1 AND SAE J1995 JAN90 STANDARD REFERENCE CONDITIONS

OF 25°C, 100 KPA, 30% RELATIVE HUMIDITY AND 150M ALTITUDE AT THE STATED AFTERCOOLER WATER TEMPERATURE.

CONSULT ALTITUDE CURVES FOR APPLICATIONS ABOVE MAXIMUM RATED ALTITUDE AND/OR TEMPERATURE.

PERFORMANCE AND FUEL CONSUMPTION ARE BASED ON 35 API, 16°C FUEL HAVING A LOWER HEATING VALUE OF 42.780 KJ/KG USED AT 29°C WITH A DENSITY OF 838.9 G/LITER.

NOTES

1) FUEL CONSUMPTION TOLERANCE. ISO 3046/1 IS 0, + 5% OF FULL LOAD DATA. NOMINAL IS ± 3 % OF FULL LOAD DATA.

2) ENGINE POWER TOLERANCE IS \pm 3 % OF FULL LOAD DATA.

3) EMISSION DATA SHOWN ARE NOT TO EXCEED VALUES.

4) HEAT REJECTION TO JACKET AND EXHAUST TOLERANCE IS ± 10% OF FULL LOAD DATA. (heat rate based on treated water)

5) HEAT REJECTION TO ATMOSPHERE TOLERANCE IS ±50% OF FULL LOAD DATA. (heat rate based on treated water)

6) HEAT REJECTION TO LUBE OIL TOLERANCE IS ± 20% OF FULL LOAD DATA. (heat rate based on treated water)

7) HEAT REJECTION TO AFTERCOOLER TOLERANCE IS ± 5% OF FULL LOAD DATA. (heat rate based on treated water)

8) TOTAL AFTERCOOLER HEAT = AFTERCOOLER HEAT x ACHRF (heat rate based on treated water)

9) TIMING BASED ON AFM INJECTORS.

DM5529 - 01

OSRV Generators Emission Factors

GEN SET PERFORMANCE DATA [S2B00313]

OCTOBER 11, 2006

	Fo	r Help Desk Phone Numbers <u>Click here</u>
Performance Number: DM	16976	Change Level: 02 •
Sales Model: 3508BDITA	Combustion: DI	Aspr: TA
Engine Power:		
910 W/O F EKW	Speed: 1,800 RPM	After Cooler: SCAC
1,298 HP		
Manifold Type: DRY	Governor Type: ADEM3	After Cooler Temp(F): 86
Turbo Quantity: 2	Engine App: GS	Turbo Arrangement: Para llel
Hertz: 60	Engine Rating: MA	Strategy:
Rating Type: PRIME	Certification: IMO 2000 - EPA TIER-I 2004 - 2007 EPA TIER-I 2000 - 2005	

General Performance Data

GEN PWR EKW	PERCENT LOAD	engine Power Bhp	BMFP	FUEL RATE LB/BHP- HR	FUEL RATE GPH	INTAKE MFLD TEMP DEG F	INTAKE MFLD P IN-HG	INTAKE AIR FLOW CFM	EXH MFLD TEMP DEG F	EXH STACK TEMP DEG F	EXH GAS FLOW CFM
910.0	100	1285	268	0.336	61.7	114.4	71.1	3,058.3	1,035.5	688.8	6,773.4
819.0	90	1154	241	0.338	55.8	111.9	64.8	2,895.8	994.1	660.0	6,261.3
728.0	80	1024	214	0.342	50.0	109.4	58.6	2,722.8	953.1	637.9	5,752.8
682.5	75	959	200	0.344	47.1	108.0	55.3	2,627.4	932.7	629.4	5,495.0
637.0	70	895	187	0.346	44.3	106.0	51.3	2,514.4	912.4	622.6	5,226.6
546.0	60	767	160	0.352	38.6	102.0	43.4	2,284.9	872.1	609.1	4,686.3
455.0	50	640	134	0.361	33.0	98.4	35.5	2,048.3	831.4	595.2	4,135.4
364.0	40	515	108	0.373	27.4	96.1	27.9	1,811.6	778.6	575.4	3,588.0
273.0	30	389	81	0.393	21.8	94.1	20.3	1,575.0	712.6	547.9	3,030.0
227.5	25	326	68	0.409	19.0	93.2	16.4	1,455.0	674.4	531.0	2,751.0
182.0	20	261	55	0.435	16.2	92.3	13.3	1,359.6	625.5	503.2	2,493.2
91.0	10	132	28	0.572	10.8	90.5	7.6	1,183.0	509.4	432.3	2,002.3

EMISSIONS DATA

This engine's exhaust emissions are in compliance with the INTERNATIONAL MARINE ORGANIZATION'S IMO regulations.

This engine conforms to US EPA MARINE compression-ignition emission regulations.

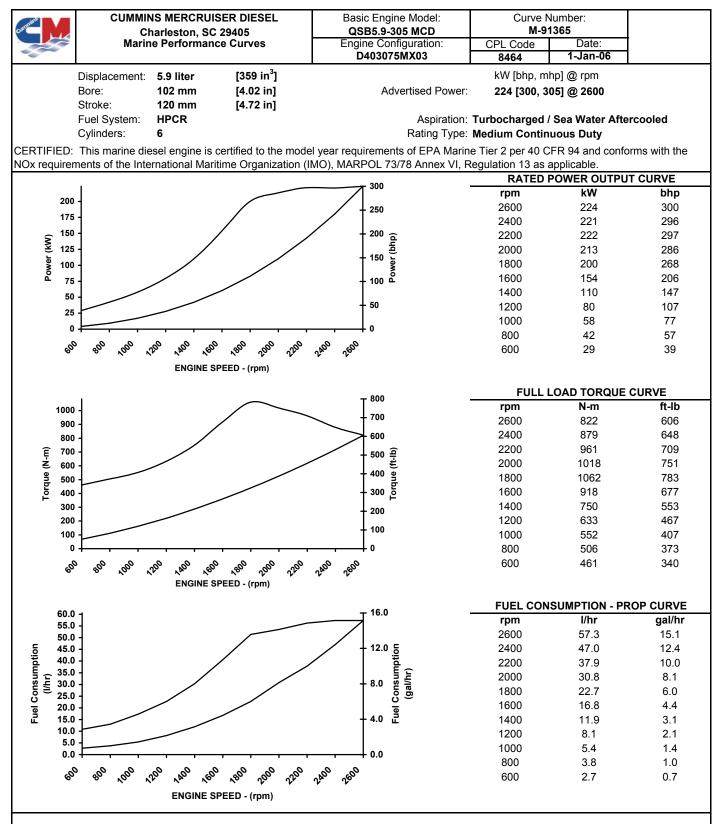
LOCALITY AGENCY/LEVEL

U.S. (incl Calif) EPA/TIER-1

Gaseous emissions values are WEIGHTED CYCLE AVERAGES and are in compliance with the following non-road regulations:

LOCALITY AGENCY/LEVEL MAX LIMITS - g/kW-hr

U.S. (incl Calif) EPA/Tier-1 CO:11.4 HC:1.3 NOx:9.2 PM:0.54


RATED SPEED "Not to exceed data"

EKW	PERCENT LOAD	engine Power Bhp	TOTAL NOX (AS NO2) LB/HR	TOTAL CO LB/HR	TOTAL HC LB/HR	PART MATTER LB/HR	OXYGEN IN EXHAUST PERCENT	DRY SMOKE OPACITY PERCENT	BOSCH SMOKE NUMBER
910.0	100	1285	24.47	1.08	0.89	.340	11.60	2.2	1.28
682.5	75	1154	13.20	1.01	0.58	.230	12.60	2.0	1.28
455.0	50	1024	7.88	1.40	0.49	.240	13.50	2.7	1.28
227.5	25	959	4.29	1.73	0.45	.240	15.00	3.4	1.35
91.0	10	895	2.23	4.07	0.68	.350	16.80	3.6	1.38

RATED SPEED "Nominal Data"

EKW	PERCENT LOAD	engine Power Bhp	TOTAL NOX (AS NO2) LB/HR	TOTAL CO LB/HR	TOTAL HC LB/HR	TOTAL CO2 LB/HR	PART MATTER LB/HR	OXYGEN IN EXHAUST PERCENT		BOSCH SMOKE NUMBER
910.0	100	1285	20.39	0.60	0.67	1,347.9	0.240	11.60	2.2	1.28
682.5	75	959	11.00	0.56	0.44	1,033.0	0.160	12.60	2.0	1.28
455.0	50	640	6.57	0.78	0.37	720.1	0.170	13.50	2.7	1.28
227.5	25	326	3.58	0.96	0.34	412.6	0.170	15.00	3.4	1.35
91.0	10	132	1.86	2.26	0.51	230.1	0.250	16.80	3.6	1.38

Kvichak Work Boats Main Engines Emission Factors

Rated Conditions: Ratings are based upon ISO 8665 and SAE J1228 reference conditions; air pressure of 100 kPa [29.612 in Hg], air temperature 25 deg. C [77 deg. F] and 30% relative humidity. Power is in accordance with IMCI procedure. Member NMMA.

Rated Curves (upper) represents rated power at the crankshaft for mature gross engine performance capabilities obtained and corrected in accordance with ISO 3046. Propeller Curve (lower) is based on a typical fixed propeller demand curve using a 2.7 exponent. Propeller Shaft Power is approximately 3% less than rated crankshaft power after typical reverse/reduction gear losses and may vary depending on the type of gear or propulsion system used.

Fuel Consumption is based on fuel of 35 deg. API gravity at 16 deg. C [60 deg. F0 having LHV of 42,780 kj/kg [18390 Btu/lb] and weighing 838.9 g/liter [7.001 lb/U.S. gal].

Medium Continuous Rating: This power rating is intended for continuous use in variable load applications where full power is limited to six (6) hours out of every twelve (12) hours of operation. Also, reduced power operations must be at or below 200 RPM of the maximum rated RPM. This is an ISO 3046 Fuel Stop Power Rating and is for applications that operate 3,000 hours per year or less.

James D Kahlubub

Marine Engine Performance Data

Curve No.: M-91365 DS-3075 DATE: 01Jan06

General Engine Data			
Engine Model			QSB5.9-305 MCD
Rating Type			Med. Cont. Duty
Rated Engine Power			224 [300]
Rated Engine Speed			2600
Rated HP Production Tolerance		•	5
Rated Engine Torque			822 [606]
Peak Engine Torque @ 1800 rpm			1062 [783]
Brake Mean Effective Pressure			1755 [255]
Indicated Mean Effective Pressure			N/A
Minimum Idle Speed Setting			600
Normal Idle Speed Variation			10
•		•	
8 1 8			2665
	۱	•	2685
Maximum Allowable Engine Speed		rpm	2685
Maximum Torque Capacity from Front of			468 [345]
Compression Ratio			17.2:1
Piston Speed			10.4 [2045]
Firing Order			1-5-3-6-2-4
Weight (Dry) Engine only - Average		kg [lb]	N.A.
Weight (Dry) Engine With Heat Exchange	ger System - Average	kg [lb]	612 [1350]
Weight Tolerance (Dry) Engine only - A			N.A.
	C C	011	
Noise and Vibration Average Noise Level – Top	(Idle)	dBA @ 1m	76
Average Noise Level Top	(Rated)		97
Average Noise Level – Right Side	(Idle)		76
Average Noise Level - Right Side		-	
Average Noise Lovel Loff Cide	(Rated)		98
Average Noise Level – Left Side	(Idle)		77
	(Rated)	0	107
Average Noise Level – Front	(Idle)	Ų	76
	(Rated)		98
Fuel System ¹			
Average Fuel Consumption – ISO 8178	E3Standard Test Cycle	l/hr [gal/hr]	38.7 [10.2]
Fuel Consumption @ Rated Speed		l/hr [gal/hr]	57 [15]
Approximate Fuel Flow to Pump		l/hr [gal/hr]	189 [50]
Maximum Allowable Fuel Supply to Pun			60 [140]
Approximate Fuel Flow Return to Tank.	• •	l/hr [gal/hr]	132 [35]
Approximate Fuel Return to Tank Temp			66 [150]
Maximum Heat Rejection to Drain Fuel ⁵			2 [99]
Fuel Transfer Pump Pressure Range			76 [11]
			N.A.
0			135,999 [19,725]
		[1]	
Air System ¹ Intake Manifold Pressure			170 [51]
Intake Manifold Pressure			172 [51]
			278 [58]
Heat Rejection to Ambient			32 [1810]
Maximum Air Cleaner Inlet Temperature	e Rise Over Ambient	°C [°F]	17 [30]
Exhaust System ¹			
Exhaust Gas Flow			600 [1272]
	Dut		421 [789]
			559 [1038]
TBD = To Be Decided	N/A = Not Applicable	N.A. = Not Availab	le
¹ All Data at Rated Conditions			

¹All Data at Rated Conditions ²Consult Installation Direction Booklet for Limitations

³Heat rejection values are based on 50% water/ 50% ethylene glycol mix and do NOT include fouling factors. If sourcing your own cooler, a service fouling factor should be applied according to the cooler manufacturer's recommendation.
 ⁴Consult option notes for flow specifications of optional Cummins seawater pumps, if applicable.
 ⁵May not be at rated load and speed. Maximum heat rejection may occur at other than rated conditions.

CUMMINS ENGINE COMPANY, INC. COLUMBUS, INDIANA

All Data is Subject to Change Without Notice - Consult the following Cummins intranet site for most recent data:

http://www.cummins.com

Marine Engine Performance Data

Curve No.: M-91365 DS-3075 DATE: 01Jan06

Emissions (in accordance with ISO 8178 Cycle E3) NOx (Oxides of Nitrogen)	6.227 [4.644] 0.104 [0.078] 0.208 [0.155] 0.103 [0.077]
Cooling System ¹ Sea Water Pump Specifications	103 [15]
Sea Water Aftercooled Engine (SWAC) Coolant Flow to Engine Heat Exchanger	238 [63] 74 [165] 85 [185] 166 [9470]
Engines with Low Temperature Aftercooling (LTA) Single Loop LTA Coolant Flow to Cooler (with blocked open thermostat)	238 [63] 66 [150] 80 [175] 183 [10420] 54 [130]

TBD = To Be Decided

N/A = Not Applicable

N.A. = Not Available

1All Data at Rated Conditions

2Consult Installation Direction Booklet for Limitations 3Heat rejection values are based on 50% water/ 50% ethylene glycol mix and do NOT include fouling factors. If sourcing your own cooler, a service fouling factor should be applied according to the cooler manufacturer's recommendation. 4Consult option notes for flow specifications of optional Cummins seawater pumps, if applicable. 5May not be at rated load and speed. Maximum heat rejection may occur at other than rated conditions.

CUMMINS ENGINE COMPANY, INC. COLUMBUS, INDIANA

All Data is Subject to Change Without Notice - Consult the following Cummins intranet site for most recent data:

http://www.cummins.com

APPENDIX C ADEC Owner Requested Limit Forms

Alaska Department of Environmental Conservation Owner Requested Limit Application

ADEC USE ONLY

Receiving Date:

ADEC Control #:

ORL :

STATIONARY SOURCE IDENTIFICATION FORM

Section 1 Stationary Source Information

Stationary Source Name:Kulluk drilling unit and associated vesse	els			
Project Name (if different): Shell Kulluk Exploration Drilling	Stationary Source Contact:Shell Offshore, Inc.			
Program	-			
Source Physical Address:Beaufort Sea OSC Waters	City:New Orleans	State:LA	Zip:70139	
	Telephone:504-728-7673		· -	
	E-Mail Address:Robert.McAlister@Shell.com			
UTM Coordinates or Latitude/Langitude:	Northing:	Easting:	Zone:	
UTM Coordinates or Latitude/Longitude:	Latitude:	Longitude:		

Section 2 Legal Owner			Section 3 Oper	Section 3 Operator (if different from owner)				
Name:Shell Offshore, Inc.			Name:	Name:				
Mailing Address:701 Poydras Street		Mailing Address:	Mailing Address:					
City:New Orleans	State:LA	Zip:70139	City:	State:	Zip:			
Telephone #:504-728-7673			Telephone #:	Telephone #:				
E-Mail Address:Robert.Mc	Alister@Shell.	com	E-Mail Address:	E-Mail Address:				

Section 4 Designated Agent (for service of process)			Section 5 Billin	g Contact Pe	e rson (if diffe	rent from owner)	
Name: ASRC Energy Services, RTS		Name:	Name:				
Mailing Address: 3900 C Street, Suite 601			Mailing Address:	Mailing Address:			
City Anchorage	State:AK	2	Zip:99503	City:		State:	Zip:
Physical Address:Same				Telephone #:			
City:	State:	Zip	:	E-Mail Address:			
Telephone #:(907)339-5486							
E-Mail Address:Greg.Horner	@asrcenergy.c	om					

Section 6 Application Contact

Name:Wayne Wooster, Air Sciences, Inc			
Mailing Address:421 SW 6th Ave Ste 1400	City:Portland	State:OR	Zip:97204
	Telephone:503-525-939	94 ext. 15	
	E-Mail Address:wwoos	ster@airsci.com	

OWNER REQUESTED LIMIT IDENTIFICATION FORM

Section 7 Certification

This certification applies to the Ain the	Quality Control Owner Requested Limit Application for	Kulluk
submitted to the department on:	12/29/06 .	(Stationary Source Name)

Type of Application

Initial Application

Change to Initial Application

The application is **NOT** complete unless the certification of truth, accuracy, and completeness on this form bears the **signature of a responsible official** of the firm making the application. (18 AAC 50.205)

CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS

"Based on information and belief formed after reasonable inquiry, I certify that the statements and information in and attached to this document are true, accurate, and complete."

Signature:	Date:12/29/06
Printed Name: Susan Childs	Title:Regulatory Coodinator, Alaska

Section 13 Attachments

Attachments Included.	List attachments:	Fuel use limitations
		Fuel sulfur content limitation

APPENDIX D 40 CFR Part 55 NOI Letters

40 CFR 55.4 Requirements to Submit a Notice of Intent

Notice of Intent (NOI) to submit an Application for Preconstruction Permit Shell Kulluk 2007-2009 Beaufort Sea Exploratory Drilling Program

Shell Offshore, Inc. (SOI) hereby submits the information below pursuant to the 40 CFR Part 55 Outer Continental Shelf (OCS) Air Regulations, Section 55.4 Requirements to submit a notice of intent. Paragraph 55.4(b) lists nine specific requirements for exploratory sources to include in the notice of intent (NOI). Each of the requirements is paraphrased below followed by SOI's response.

Requirement No. 1 - 40 CFR 55.4(b)(1): General company information.

The pertinent owner, owner's agent, operator, and facility contact information is presented in Table 1.

Owner and Operator	
Name	Shell Offshore, Inc.
Address	701 Poydras Street, New Orleans, LA 70139
Contact	Keith Craik
Contact phone number	(713) 546-6669
Contact e-mail address	keith.craik@shell.com
Agent	
Name	ASRC Energy Services, RTS
Address	3900 C Street, Suite 601, Anchorage, AK 99503
Contact	Greg Horner
Contact phone number	(907) 339-5486
Contact e-mail address	greg.horner@asrcenergy.com

Table 1: Company and Operator Information

Requirement No. 2 - 40 CFR 55.4(b)(2): Facility description.

The Shell Kulluk Exploratory Drilling Program will be an exploration project conducting exploratory oil and gas drilling operations (North American Industry Classification System [NAICS] code 211111 Crude Petroleum and Natural Gas Extraction) on SOI's oil and gas lease-holdings on federal OCS waters located in the Beaufort Sea. The proposed drilling sites are located on federal OCS waters between longitude 144 degrees W and longitude 151 degrees W. SOI's leases in the Beaufort Sea exist, at their closest point, approximately nine miles north of Point Thomson shoreline and five miles northwest of Barter Island shoreline for the eastern lease-

Shell Kulluk NOI December 28, 2006 Page 1 of 1 holding locations, and twelve miles north of Anachlik Island shoreline for the western leaseholding locations.

The project is scheduled to last three drilling seasons (2007, 2008, and 2009) lasting up to 120 days per calendar year, weather and ice conditions permitting SOI anticipates drilling operations per drill site will range from 30 to 60 days. SOI, therefore, anticipates drilling up to three drill site locations per year. The drilling season is projected to run from approximately August 1 through November 30 each year, again weather and ice conditions permitting SOI intends to conduct a three-year exploratory drilling program, 2007 through 2009, although drilling activity may occur in 2010 and 2011 if ice conditions prevent significant exploratory drilling activity in 2007, 2008 or 2009. The project is scheduled to begin in mid-to-late July 2007 and end December 1, 2009, but may extend into 2010 and 2011 if ice and weather conditions limit the extent of drilling in 2007, 2008, or 2009.

The Shell Kulluk Exploratory Drilling Program exploratory drilling program will consist of several vessels. The primary exploration drilling activities will be conducted from Shell's conical drilling unit (CDU), the Kulluk. The Kulluk is a purpose-built floating drilling vessel with Arctic Class IV hull design. The Kulluk CDU will be supported by a number of associated support vessels. The associated support vessels will include two icebreaker vessels, a re-supply ship, and an oil spill response (OSR) fleet. The Vladimir Ignatjuk will perform primary ice management duty (icebreaking). The Tor Viking II will assist the Vladimir Ignatjuk with ice management duty in 2007. The Nordica or its identical sister vessel, the Fennica, may replace the Tor Viking II in 2008 and 2009. The two icebreakers will also tow the Kulluk into and away from the OCS lease-holding blocks each drilling season. The Jim Kilabuk will serve as the re-supply vessel. The OSR fleet will consist of one larger OSR vessel and a number of smaller boats. Photographs and diagrams of the Kulluk and associated support vessels will be provided in the air permit application.

The exploratory drilling process consists of three phases, rig placement, drilling operations, and rig removal. One or more of the icebreaker vessels will tow the Kulluk to one of SOI's OCS lease-holdings, will then assist the Kulluk to maneuver and anchor it to the seabed, and will then move away from the Kulluk to perform ice management duty. The Kulluk will perform its drilling operations and at operation completion of that drill site one of the icebreaker vessels will assist the Kulluk to pull anchors and then to tow the Kulluk to the next drill site location, and then assist in the anchoring and ice management duty as described above. Meanwhile, the Jim Kilabuk will re-supply the Kulluk every two to three weeks. The Kulluk OSR fleet will be stationed nearby the Kulluk in case of a spill and will conduct oil spill drill response drill exercises. At the end of the drilling season the two icebreaker vessels will assist the Kulluk to

Shell Kulluk NOI December 28, 2006 Page 2 of 2 pull anchors and tow the Kulluk to an over-winter safe harbor location. A complete facility description will be provided in the air permit application.

Requirement No. 3 - 40 CFR 55.4(b)(3): Estimate of the proposed project's potential emissions (PTE).

Following September 2006, EPA Region 10 (EPA) guidance SOI has defined the Shell Kulluk drilling vessel, when anchored or otherwise attached to the seabed at each drill site, as a separate "stationary source." EPA's September 2006 guidance further requires that the emissions from the project's associated support vessels be included in the "source" potentialto-emit (PTE) when the support vessels are within 25 miles of the anchored drilling vessel. These guidance interpretations are consistent with the OCS source definition found in 40 CFR 55.2. SOI intends to operate the Kulluk and its associated support vessels as a synthetic minor source that will not exceed 250 tons per year of any new source review regulated air contaminant. The project's primary air contaminant is nitrogen oxides (NO₂) with lesser quantities of carbon monoxide (CO), small-diameter particulate matter (PM₁₀), volatile organic compounds (VOC), and sulfur dioxide (SO_2) . The project's potential emissions will vary depending on the length of the drilling operations per drill site, the compliment of ice management vessels employed, and the severity of the ice conditions surrounding the drill site. For example, SOI estimates the Kulluk drilling vessel for a 60-day drilling operation will result in approximately 50 tons NO_x . The associated support vessels NO_x emissions may approach 200 tons, again depending on the icebreaker vessels combination employed and the severity of the ice conditions surrounding the Kulluk drilling vessel. The 2007 emissions estimated based on a 59-day drill site are presented in Table 2.

	NO _x	СО	PM ₁₀	VOC	SO ₂
Emissions	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Kulluk	48.7	7.9	2.3	1.9	4.6
Vladimir Ignatjuk	162.9	44.5	3.6	7.2	10.5
Tor Viking	21.1	19.8	1.7	2.9	6.4
Kulluk OSR Fleet	10.7	9.2	0.5	1.2	1.0
Jim Kilabuk	1.6	0.4	0.04	0.06	0.09
Total	245.0	81.8	8.1	13.3	22.6

Table 2:	Kulluk 2007	'Emissions	Estimate	(Based o	on Projected	59-Day	Drill Site	Operation)
----------	-------------	------------	----------	----------	--------------	--------	------------	------------

SOI intends to limit drill operations at each drilling site (e.g., a fleet wide fuel consumption limit) to ensure that no air contaminant exceeds 250 tons per year, i.e., a synthetic minor new source.

Shell Kulluk NOI December 28, 2006 Page 3 of 3 SOI will accept federally enforceable operational limits to stay below the 250-ton-per-year major new source review threshold value.

Requirement No. 4 – 40 CFR 55.4(b)(4): Description of all emission points including associated vessels.

A complete description of the Shell Kulluk Exploratory Drilling Program vessels, combustion sources identification, size rating, emission factor, hourly emissions, and project site yearly emissions will be provided in the air permit application. However, the dominant emission source for the project is the associated support vessel main propulsion engines. The support vessel main propulsion engines/electrical generators account for 98 percent to more than 99 percent of the support vessel emissions. As for the drilling vessel itself, the Kulluk main drilling engines and deck cranes account for 95 percent to more than 98 percent of the drilling vessel emissions. All of the Kulluk and the associated marine support vessels combustion sources will consist of marine/non-road compression-ignition internal combustion engines, boilers and heaters. All of these combustion sources will be diesel fuel fired. The engines will have the purpose of generating electricity, pumping, compressing, providing direct drive mechanical power, and for powering mobile machinery. SOI intends to collect generated on-site trash for offsite disposal/management and/or for incineration on one of the icebreaker incinerators. SOI does not intend to burn trash in the Kulluk's on-site trash incinerator. Nor does SOI intend to flare drilling well off-gases during the project.

Requirement No. 5 – 40 CFR 55.4(b)(5): Estimate of quantity and type of fuels and raw materials to be used.

The estimated diesel fuel consumption for the 59-day drilling operation described above is presented in Table 3.

Table 3: Shell Kulluk Exploratory Drilling Program Diesel Fuel Consumption Estimate (Based on Projected 59-Day Drill Site Operation)

Material	Quantity	Units
Kulluk drilling vessel diesel fuel	0.33	Million gallons
Associated support vessels diesel fuel	1.21	Million gallons
Total Shell Kulluk Exploratory Drilling Program diesel fuel	1.54	Million gallons

Shell Kulluk NOI December 28, 2006 Page 4 of 4

Requirement No. 6 – 40 CFR 55.4(b)(6): Description of proposed air pollution control equipment.

SOI intends to install CBOI injectors on the Kulluk main drilling engines to reduce NO_x emissions. The CBOI injectors are projected to reduce NO_x emissions by approximately 30 tons over a 59-day drilling season. No add-on air pollution control equipment is being proposed for any of the other Kulluk emission sources. The Tor Viking II is equipped with SCR NO_x combustion control using a urea-based scrubbing reagent. The SCR system was installed during the initial Viking vessel construction as the retrofit cost of installing SCR controls is very expensive. No add-on air pollution control equipment is being proposed for the other support vessels.

Requirement No. 7 – 40 CFR 55.4(b)(7): Proposed limitations on source operations or any work practice standards affecting emissions.

SOI, since all combustion sources are diesel fuel fired, proposes to limit the project drill site emissions to less than 250 tons by monitoring diesel fuel consumption on each project vessel – the Kulluk drilling vessel, each of the icebreaker vessels, the re-supply vessel, and the combined OSR fleet. SOI proposes to calculate emissions from each vessel's fuel consumption by using an assigned vessel-wide emission factor (e.g., the icebreaker vessel main propulsion engine emission factor – lb/hp-hr), multiplied by fuel consumption and EPA AP42 average brake specific fuel consumption and diesel fuel heating values. SOI will then sum each vessel's emissions to determine the project fleet-wide emissions running total. SOI proposes to implement fuel consumption monitoring on each project vessel on a weekly and as necessary, a daily basis, to ensure that the project-wide fuel consumption limits emissions to less than 250 tons per drill site per year. SOI believes the fleet-wide diesel fuel consumption can easily be monitored and documented. Fuel consumption can be measured weekly or daily, as necessary, by dipstick in the fuel tanks and documented as part of the operations procedures.

Requirement No. 8 - 40 CFR 55.4(b)(8): Other information affecting emissions.

In March 2006, SOI and its contractors, ASRC Energy Services, RTS, and Air Sciences Inc., discussed with the EPA Region 10 staff the choice of an approved air quality model. EPA directed SOI and Air Sciences to model the project emissions with a conservative screening model, SCREEN3. The SCREEN3 model (which incorporates worst-case assumptions) frequently overestimates real-world impacts from the project. SOI will model the project emissions to demonstrate compliance with applicable air quality standards. SOI will include the modeled source characterization (i.e., short-term emission rate, stack heights, stack diameter, stack height, exit velocity, and temperature, etc.), model selection, meteorological data, background

Shell Kulluk NOI December 28, 2006 Page 5 of 5 concentrations, evaluation methodology, and modeling results in the air permit application. In addition, SOI intends to obtain at least a 500-meter Safety Exclusion Zone from the United States Coast Guard to help keep non-project related people and vessels a safe distance away from the drilling vessel. SOI will model the project emissions to the 500-meter Safety Exclusion Zone as the point of ambient air. SOI will provide a copy of the United States Coast Guard Safety Exclusion Zone application to EPA under a separate cover letter from the air permit application.

Requirement No. 9 – 40 CFR 55.4(b)(9): Such other information as may be necessary to determine the applicability of onshore requirements.

The Corresponding Onshore Area (COA) for the Shell Kulluk project is the Northern Alaska Intrastate Air Quality Control Region that has been classified by the Alaska Department of Environmental Conservation (ADEC) as Air Quality Class II area. ADEC suggested using the background ambient air quality concentrations measured at the Arctic North Slope Eastern Region (ANSER) for ambient air quality modeling purposes. SOI concurs with the ADEC's recommendation that the ANSER background ambient air quality concentration is appropriate since no significant growth activity has occurred in the nearby areas of the western or eastern SOI lease-holding OCS blocks.

Shell Kulluk NOI December 28, 2006 Page 6 of 6

APPENDIX E Modeling Calculations and SCREEN3 Model Output

Shell Kulluk - Beaufort Sea, Alaska Modeling Calculations 12/13/2006

	Distance Max. M			odeled X/Q		
Averaging Period >	(m)	1-hour	3-hour	8-hour	24-hour	Annual
Drill Rig: Kulluk						
Stack #1: 2 Main Engines	500 ^A	75.19	67.67	52.63	30.08	6.02
Stack #2: 2 Air Compressors	500 ^A	282.30	254.07	197.61	112.92	22.58
Stack #3: 2 HPP Engines	500 ^A	349.00	314.10	244.30	139.60	27.92
Stack #4: 3 Crane Engines	500 ^A	113.70	102.33	79.59	45.48	9.10
Stack #5: 1 Boiler / 1 Water Heater	500 ^A	317.90	286.11	222.53	127.16	25.43
Stack #6: 1 Logging Winch	500 ^A	641.50	577.35	449.05	256.60	51.32
Support Vessels: Kulluk Fleet						
Vladimir Ignatjuk	13,500 ^в	0.455	0.41	0.32	0.18	0.04
Fennica/Nordica	6,000 ^C	1.041	0.94	0.73	0.42	0.08
Dil Response Ships - Kulluk	500 ^A	56.84	51.16	39.79	22.74	4.55
lim Kilabuk - Kulluk	500 ^A	56.84	51.16	39.79	22.74	4.55

^A Distance to exclusion zone (i.e. ambient air boundary).

^B Center of primary icebreaker ice management activity to point of maximum impact.

^C Center of secondary icebreaker ice management activity to point of maximum impact.

	Emissions				Max. Modeled X/Q					Max. Modeled Impact						
	#			(g/sec)			. 1		ug*s/m ³ *g					(µg/m ³)		
Source ID NOx	Stacks	1-hour	3-hour	8-hour	24-hour	Annual	1-hour	3-hour	8-nour	24-hour	Annual	1-hour	3-hour	8-hour	24-hour	Annual
Drill Rig: Kulluk																
Stack #1: 2 Main Engines	1					1.82E+00					6.02					10.9
Stack #2: 2 Air Compressors	1					1.36E-01					22.58					3.1
Stack #3: 2 HPP Engines	1					3.21E-01					27.92					9.0
Stack #4: 3 Crane Engines	1					6.55E-01					9.10					6.0
Stack #5: 1 Boiler / 1 Water Heater	1					8.71E-03					25.43					0.2
Stack #6: 1 Logging Winch	1					8.99E-02					51.32					4.6
Support Vessels: Kulluk Fleet																
Vladimir Ignatjuk	1					1.23E+01					0.04					0.4
Fennica/Nordica	1					1.08E+01					0.08					0.9
Oil Response Ships - Kulluk	1					4.19E+00					4.55					19.0
Jim Kilabuk - Kulluk	1					3.77E+00					4.55					17.1
										NOx Tota	il Impact >					71.3
PM 10																
Drill Rig: Kulluk																
Stack #1: 2 Main Engines	1				5.00E-01	8.22E-02				30.08	6.02				15.0	0.5
Stack #2: 2 Air Compressors	1				4.15E-02	6.81E-03				112.92	22.58				4.7	0.2
Stack #3: 2 HPP Engines	1				1.39E-01	2.28E-02				139.60	27.92				19.3	0.6
Stack #4: 3 Crane Engines	1				2.83E-01	4.65E-02				45.48	9.10				12.9	0.4
Stack #5: 1 Boiler / 1 Water Heater	1				8.74E-03	1.44E-03				127.16	25.43				1.1	0.04
Stack #6: 1 Logging Winch	1				3.88E-02	6.38E-03				256.60	51.32				10.0	0.3
Support Vessels: Kulluk Fleet					1.405+00	2.005.01				0.10	0.04				0.0	0.01
Vladimir Ignatjuk	1				1.40E+00	2.30E-01				0.18	0.04				0.3	0.01
Fennica/Nordica	1				1.42E+00	2.34E-01				0.42	0.08				0.6	0.02
Oil Response Ships - Kulluk	1				6.57E-01	1.08E-01				22.74	4.55				14.9	0.5
Jim Kilabuk - Kulluk	1				4.45E-01	7.31E-02				22.74 PM ₁₀ Tota	4.55				10.1 88.9	0.3
SO ₂										110110 1000	a impaci -				00.9	2.9
Drill Rig: Kulluk								_		_	_				_	
Stack #1: 2 Main Engines	1		1.09E+00		1.09E+00	1.79E-01		67.67		30.08	6.02		73.8		32.8	1.1
Stack #2: 2 Air Compressors	1		1.94E-01		1.94E-01	3.18E-02		254.07		112.92	22.58		49.2		21.9	0.7
Stack #3: 2 HPP Engines	1		9.68E-02		9.68E-02	1.59E-02		314.10		139.60	27.92		30.4		13.5	0.4
Stack #4: 3 Crane Engines	1		1.98E-01		1.98E-01	3.25E-02		102.33		45.48	9.10		20.2		9.0	0.3
Stack #5: 1 Boiler / 1 Water Heater	1		1.01E-02		1.01E-02	1.67E-03		286.11		127.16	25.43		2.9		1.3	0.04
Stack #6: 1 Logging Winch	1		2.71E-02		2.71E-02	4.46E-03		577.35		256.60	51.32		15.7		7.0	0.2
Support Vessels: Kulluk Fleet																
Vladimir Ignatjuk	1		4.79E+00		4.79E+00	7.88E-01		0.41		0.18	0.04		2.0		0.9	0.03
Fennica/Nordica	1		4.38E+00		4.38E+00	7.20E-01		0.94		0.42	0.08		4.1		1.8	0.1
Oil Response Ships - Kulluk	1		2.36E+00		2.36E+00	3.88E-01		51.16		22.74	4.55		120.8		53.7	1.8
Jim Kilabuk - Kulluk	1		1.45E+00		1.45E+00	2.39E-01		51.16		22.74	4.55		74.2		33.0	1.1
										CO	l Impact >		393.3		174.8	5.7

Stack #1: 2 Main Engines - MAINENGS

12/11/06 08:53:56

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

SIMPLE TERRAIN INPUTS: SOURCE TYPE = POINT EMISSION RATE (G/S) = 1.00000 STACK HEIGHT (M) = 17.8308 STK INSIDE DIAM (M) = 97.1122 STK EXIT VELOCITY (M/S) = .0010 STK GAS EXIT TEMP (K) = 672.0389 AMBIENT AIR TEMP (K) = 273.0000 RECEPTOR HEIGHT (M) = .0000 URBAN/RURAL OPTION = RURAL BUILDING HEIGHT (M) = 17.9832 MIN HORIZ BLDG DIM (M) = 81.0768 MAX HORIZ BLDG DIM (M) = 81.0768

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 13.728 M**4/S**3; MOM. FLUX = .001 M**4/S**2.

*** FULL METEOROLOGY ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
500.	75.19	6	1.0	1.4	10000.0	42.28	25.74	23.41	SS
600.	70.44	б	1.0	1.4	10000.0	42.28	28.90	23.95	SS
700.	66.51	б	1.0	1.4	10000.0	42.28	32.03	24.49	SS
800.	63.17	б	1.0	1.4	10000.0	42.28	35.13	25.02	SS
900.	60.28	6	1.0	1.4	10000.0	42.28	38.19	25.53	SS
1000.	57.72	б	1.0	1.4	10000.0	42.28	41.24	26.04	SS
1100.	55.44	6	1.0	1.4	10000.0	42.28	44.25	26.54	SS
1200.	51.38	6	1.0	1.4	10000.0	42.28	47.25	26.36	SS
1300.	49.73	6	1.0	1.4	10000.0	42.28	50.23	26.86	SS
1400.	48.06	б	1.0	1.4	10000.0	42.28	53.18	27.29	SS
1500.	46.48	6	1.0	1.4	10000.0	42.28	56.12	27.70	SS
1600.	45.01	6	1.0	1.4	10000.0	42.28	59.04	28.10	SS
1700.	43.64	б	1.0		10000.0	42.28	61.95	28.50	SS
1800.	42.37	6	1.0	1.4	10000.0	42.28	64.84	28.89	SS
1900.	41.17	6	1.0	1.4	10000.0	42.28	67.71	29.27	SS
2000.	40.04	б	1.0	1.4	10000.0	42.28	70.57	29.65	SS
2100.	38.97	6	1.0	1.4	10000.0	42.28	73.42	30.02	SS
2200.	37.96	6	1.0	1.4	10000.0	42.28	76.26	30.39	SS
2300.	37.00	6	1.0	1.4	10000.0	42.28	79.08	30.75	SS
2400.	36.09	6	1.0	1.4	10000.0	42.28	81.89	31.11	SS
2500.	35.23	6	1.0	1.4	10000.0	42.28	84.70	31.46	SS
2600.	34.40	б	1.0		10000.0	42.28	87.49	31.81	SS
2700.	33.61	б	1.0	1.4	10000.0	42.28	90.27	32.15	SS
2800.	32.85	б	1.0		10000.0	42.28	93.04	32.49	SS
2900.	32.13	б	1.0		10000.0	42.28	95.80	32.83	SS
3000.	31.43	б	1.0	1.4	10000.0	42.28	98.55	33.16	SS
3500.	28.35	6	1.0	1.4	10000.0	42.28	112.17	34.76	SS
4000.	25.77	6	1.0	1.4	10000.0	42.28	125.60	36.29	SS
4500.	23.59	6	1.0		10000.0	42.28	138.85	37.74	SS
5000.	21.73	6	1.0		10000.0	42.28	151.94	39.13	SS
5500.	20.07	б	1.0	1.4	10000.0	42.28	164.90	39.74	SS

6000.18.6761.01.4 10000.042.28177.7340.946500.17.4461.01.4 10000.042.28190.4342.077000.16.3661.01.4 10000.042.28203.0343.157500.15.3861.01.4 10000.042.28215.5344.208000.14.5161.01.4 10000.042.28227.9345.218500.13.7361.01.4 10000.042.28240.2446.209000.13.0161.01.4 10000.042.28252.4747.15 SS SS SS SS SS SS SS 9000.13.0161.01.410000.042.28252.4747.15SS9500.12.3661.01.410000.042.28264.6248.08SS10000.11.7761.01.410000.042.28276.6948.98SS15000.7.91361.01.410000.042.28393.9355.69SS20000.5.90061.01.410000.042.28506.2560.96SS MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 6 1.0 1.4 10000.0 42.28 25.74 23.41 SS 500. 75.19 DWASH= MEANS NO CALC MADE (CONC = 0.0)DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ************ *** REGULATORY (Default) *** PERFORMING CAVITY CALCULATIONS WITH ORIGINAL SCREEN CAVITY MODEL (BRODE, 1988) ***** *** CAVITY CALCULATION - 2 *** *** CAVITY CALCULATION - 1 *** *** CAVITY CALCULATION - 2 CONC (UG/M**3) = 457.2 CRIT WS @10M (M/S) = 1.00 CRIT WS @ HS (M/S) = 1.12 DILUTION WS (M/S) = 1.00 CAVITY HT (M) = 18.07 CAVITY LENGTH (M) = 66.70 ALONCHINE DIM (M) = 81.08

 CONC $(UG/M^{**3}) = 457.2$

 CRIT WS @10M (M/S) = 1.00

 CRIT WS @ HS (M/S) = 1.12

 DILUTION WS (M/S) = 1.00

 CAVITY HT (M) = 18.07

 CAVITY LENGTH (M) = 66.70

 ALONGWIND DIM (M) = 81.08
 ALONGWIND DIM (M) = 81.08 ***** END OF CAVITY CALCULATIONS ****** *** SUMMARY OF SCREEN MODEL RESULTS *** ****** MAX CONC DIST TO (UG/M**3) MAX (M) CALCULATION TERRAIN HT (M) PROCEDURE -----_____ _____ SIMPLE TERRAIN 75.19 500. 0. BLDG. CAVITY-1 457.2 67. -- (DIST = CAVITY LENGTH) BLDG. CAVITY-2 457.2 67. -- (DIST = CAVITY LENGTH)

Stack #2: 2 Air Compressors - COMPENGS

12/11/06 08:53:59

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

=	POINT
=	1.00000
=	9.7536
=	.2089
) =	39.9995
=	699.8167
=	273.0000
=	.0000
=	RURAL
=	14.6304
=	81.0768
=	81.0768
	= = = = = = =

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 2.611 M**4/S**3; MOM. FLUX = 6.812 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF $\hfill 0.$ M above stack base used for following distances ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
500.	282.3	6	1.5	1.5	10000.0	22.34	17.97	16.23	SS
600.	248.2	6	1.5	1.5	10000.0	22.34	21.24	17.03	SS
700.	221.8	6	1.5	1.5	10000.0	22.34	24.46	17.81	SS
800.	200.5	б	1.5	1.5	10000.0	22.34	27.63	18.56	SS
900.	182.8	б	1.5	1.5	10000.0	22.34	30.78	19.30	SS
1000.	167.9	б	1.5		10000.0	22.34	33.88	20.02	SS
1100.	155.0	б	1.5		10000.0	22.34	36.96	20.73	SS
1200.	146.1	6	1.0		10000.0	28.20	40.01	19.85	SS
1300.	140.5	б	1.0		10000.0	28.20	43.04	20.56	SS
1400.	134.9	6	1.0		10000.0	28.20	46.05	21.26	SS
1500.	126.5	6	1.0		10000.0	28.20	49.03	21.21	SS
1600.	121.9	6	1.0		10000.0	28.20	51.99	21.85	SS
1700.	117.2	6	1.0		10000.0	28.20	54.94	22.43	SS
1800.	112.8	6	1.0		10000.0	28.20	57.87	23.00	SS
1900.	108.6	6	1.0		10000.0	28.20	60.78	23.55	SS
2000.	104.6	6	1.0		10000.0	28.20	63.68	24.10	SS
2100.	100.8	6 6	1.0		10000.0	28.20	66.56	24.63	SS
2200.	97.24 93.84	6 6	1.0		10000.0	28.20 28.20	69.42 72.28	25.15 25.67	SS SS
2300. 2400.	90.62	6	1.0 1.0		10000.0	28.20	75.12	25.07	SS
2400.	87.56	6	1.0		10000.0	28.20	77.95	26.18	SS
2600.	84.42	6	1.0		10000.0	28.20	80.76	26.46	SS
2700.	81.76	6	1.0		10000.0	28.20	83.57	26.95	SS
2800.	79.21	6	1.0		10000.0	28.20	86.36	27.37	SS
2900.	76.78	6	1.0		10000.0	28.20	89.15	27.78	SS
3000.	74.48	6	1.0		10000.0	28.20	91.92	28.18	SS
3500.	64.54	6	1.0		10000.0	28.20	105.65	30.09	SS
4000.	56.66	6	1.0		10000.0	28.20	119.17	31.87	SS
4500.	50.30	6	1.0	1.0	10000.0	28.20	132.50	33.55	SS
5000.	45.07	6	1.0	1.0	10000.0	28.20	145.67	35.13	SS
5500.	40.71	6	1.0	1.0	10000.0	28.20	158.69	36.64	SS
6000.	37.04	б	1.0	1.0	10000.0	28.20	171.58	38.07	SS
6500.	33.90	б	1.0		10000.0	28.20	184.34	39.45	SS
7000.	31.35	6	1.0		10000.0	28.20	196.99	40.40	SS
7500.	29.04	6	1.0		10000.0	28.20	209.54	41.55	SS
8000.	27.02	6	1.0		10000.0	28.20	221.98	42.65	SS
8500.	25.24	6	1.0		10000.0	28.20	234.34	43.72	SS
9000.	23.65	б	1.0		10000.0	28.20	246.61	44.75	SS
9500.	22.24	6	1.0		10000.0	28.20	258.79	45.74	SS
10000.	20.96	6	1.0	1.0	10000.0	28.20	270.90	46.71	SS

15000.13.0961.01.0 10000.028.20388.4354.8820000.9.44761.01.0 10000.028.20500.9560.29 SS SS MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 6 1.5 1.5 10000.0 22.34 17.97 16.23 500. 282.3 SS DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ************ *** REGULATORY (Default) *** PERFORMING CAVITY CALCULATIONS WITH ORIGINAL SCREEN CAVITY MODEL (BRODE, 1988) *** CAVITY CALCULATION - 1 ***
CONC (UG/M^{*3}) = 297.1
CRIT WS @10M (M/S) = 3.78
CRIT WS @10M (M/S) = 3.78
CRIT WS @10M (M/S) = 3.78
CRIT WS @10M (M/S) = 3.78
DILUTION WS (M/S) = 1.89
DILUTION WS (M/S) = 14.63
CAVITY HT (M) = 14.63
CAVITY LENGTH (M) = 59.48
ALONGWIND DIM (M) = 81.08*** CAVITY CALCULATION - 2 ***
CONC (UG/M^{*3}) = 297.1
CRIT WS @10M (M/S) = 3.78
DILUTION WS (M/S) = 3.78
CRIT WS @ HS (M/S) = 3.78
DILUTION WS (M/S) = 1.89
DILUTION WS (M/S) = 1.89
DILUTION WS (M/S) = 1.89
ALONGWIND DIM (M) = 81.08 ************************************* END OF CAVITY CALCULATIONS ****** ***** *** SUMMARY OF SCREEN MODEL RESULTS *** ****** CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M) _____ _____ _____ SIMPLE TERRAIN 282.3 500. 0. -- (DIST = CAVITY LENGTH) BLDG, CAVITY-1 59. 297.1 59. BLDG. CAVITY-2 297.1 -- (DIST = CAVITY LENGTH)

** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

Stack #3: 2 HPP Engines - HPPENGS

12/11/06 08:53:59

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

SIMPLE TERRAIN INPUTS:		
SOURCE TYPE	=	POINT
EMISSION RATE (G/S)	=	1.00000
STACK HEIGHT (M)	=	9.7536
STK INSIDE DIAM (M)	=	.1836
STK EXIT VELOCITY (M/S	5)=	39.9990
STK GAS EXIT TEMP (K)	=	699.8167
AMBIENT AIR TEMP (K)	=	273.0000

RECEPTOR HEIGHT (M)=.0000URBAN/RURAL OPTION=RURALBUILDING HEIGHT (M)=14.6304MIN HORIZ BLDG DIM (M)=81.0768MAX HORIZ BLDG DIM (M)=81.0768

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 2.015 M**4/S**3; MOM. FLUX = 5.258 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
500.	349.0	6	1.5	1.5	10000.0	19.87	17.97	16.77	SS
600.	299.9	6	1.5		10000.0	19.87	21.24	17.55	SS
700.	263.0	6	1.5		10000.0	19.87	24.46	18.31	SS
800.	238.7	6	1.0		10000.0	24.89	27.63	17.46	SS
900.	223.3	6	1.0		10000.0	24.89	30.78	18.22	SS
1000.	209.3	6	1.0		10000.0	24.89	33.88	18.97	SS
1100.	196.7	6	1.0		10000.0	24.89	36.96	19.70	SS
1200.	185.3	6	1.0		10000.0	24.89	40.01	20.41	SS
1300.	174.8	6	1.0		10000.0	24.89	43.04	21.11	SS
1400.	163.2	6	1.0		10000.0	24.89	46.05	21.05	SS
1500.	155.0	6	1.0		10000.0	24.89	49.03	21.72	SS
1600.	147.2	6	1.0		10000.0	24.89	51.99	22.30	SS
1700.	140.1	6	1.0		10000.0	24.89	54.94	22.87	SS
1800.	133.5	6	1.0		10000.0	24.89	57.87	23.43	SS
1900.	127.4	6	1.0		10000.0	24.89	60.78	23.98	SS
2000.	121.8	б	1.0	1.0	10000.0	24.89	63.68	24.51	SS
2100.	116.5	6	1.0	1.0	10000.0	24.89	66.56	25.04	SS
2200.	111.6	6	1.0	1.0	10000.0	24.89	69.42	25.55	SS
2300.	107.1	6	1.0	1.0	10000.0	24.89	72.28	26.06	SS
2400.	102.8	б	1.0	1.0	10000.0	24.89	75.12	26.56	SS
2500.	99.21	6	1.0	1.0	10000.0	24.89	77.95	26.31	SS
2600.	95.53	6	1.0	1.0	10000.0	24.89	80.76	26.80	SS
2700.	92.09	б	1.0	1.0	10000.0	24.89	83.57	27.24	SS
2800.	88.88	б	1.0	1.0	10000.0	24.89	86.36	27.65	SS
2900.	85.85	6	1.0	1.0	10000.0	24.89	89.15	28.06	SS
3000.	83.00	6	1.0	1.0	10000.0	24.89	91.92	28.45	SS
3500.	70.92	6	1.0	1.0	10000.0	24.89	105.65	30.35	SS
4000.	61.59	6	1.0	1.0	10000.0	24.89	119.17	32.11	SS
4500.	54.21	б	1.0	1.0	10000.0	24.89	132.50	33.77	SS
5000.	48.24	б	1.0		10000.0	24.89	145.67	35.34	SS
5500.	43.33	б	1.0		10000.0	24.89	158.69	36.84	SS
6000.	39.23	б	1.0		10000.0	24.89	171.58	38.27	SS
6500.	35.77	б	1.0		10000.0	24.89	184.34	39.64	SS
7000.	33.01	6	1.0		10000.0	24.89	196.99	40.53	SS
7500.	30.50	6	1.0		10000.0	24.89	209.54	41.68	SS
8000.	28.30	6	1.0		10000.0	24.89	221.98	42.77	SS
8500.	26.37	6	1.0		10000.0	24.89	234.34	43.83	SS
9000.	24.67	6	1.0		10000.0	24.89	246.61	44.86	SS
9500.	23.15	6	1.0		10000.0	24.89	258.79	45.85	SS
10000.	21.79	6	1.0		10000.0	24.89	270.90	46.82	SS
15000.	13.47	6	1.0		10000.0	24.89	388.43	54.88	SS
20000.	9.678	6	1.0	1.0	10000.0	24.89	500.95	60.29	SS
N / 7 37 T N / T T /	1 UD CONCENT				F00 M				
MAXIMUM 500.	1-HR CONCENT 349.0	6	1.5		500. M 10000.0	19.87	17.97	16.77	SS
500.	347.0	Ø	1.0	1.5	10000.0	19.0/	11.91	10.//	22

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED

DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB *** REGULATORY (Default) *** PERFORMING CAVITY CALCULATIONS WITH ORIGINAL SCREEN CAVITY MODEL (BRODE, 1988) *******

 *** CAVITY CALCULATION - 1 ***
 *** CAVITY CALCULATION - 2 ***

 CONC (UG/M**3) = 344.4
 CONC (UG/M**3) = 344.4

 CRIT WS @10M (M/S) = 3.26
 CRIT WS @10M (M/S) = 3.26

 CRIT WS @ HS (M/S) = 3.26
 CRIT WS @10M (M/S) = 3.26

 DILUTION WS (M/S) = 1.63
 DILUTION WS (M/S) = 1.63

 CAVITY HT (M) = 14.63
 CAVITY HT (M) = 14.63

 CAVITY LENGTH (M) = 59.48
 CAVITY LENGTH (M) = 59.48

 ALONGWIND DIM (M) = 81.08
 ALONGWIND DIM (M) = 81.08

 *** CAVITY CALCULATION - 1 *** ************ END OF CAVITY CALCULATIONS ***** *** SUMMARY OF SCREEN MODEL RESULTS *** ***** CALCULATION MAX CONC DIST TO TERRAIN (UG/M**3) MAX (M) HT (M) PROCEDURE _____ -----_____ SIMPLE TERRAIN 349.0 500. 0. 59. 344.4 BLDG. CAVITY-1 -- (DIST = CAVITY LENGTH) BLDG. CAVITY-2 344.4 59. -- (DIST = CAVITY LENGTH) ** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

Stack #4: 3 Deck Cranes - DECKCRNS

12/11/06 08:54:00

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

SIMPLE TERRAIN INPUTS:		
SOURCE TYPE	=	POINT
EMISSION RATE (G/S)	=	1.00000
STACK HEIGHT (M)	=	22.5552
STK INSIDE DIAM (M)	=	.2540
STK EXIT VELOCITY (M/S) =	20.0624
STK GAS EXIT TEMP (K)	=	672.0389
AMBIENT AIR TEMP (K)	=	273.0000
RECEPTOR HEIGHT (M)	=	.0000
URBAN/RURAL OPTION	=	RURAL
BUILDING HEIGHT (M)	=	17.9832
MIN HORIZ BLDG DIM (M)	=	81.0768
MAX HORIZ BLDG DIM (M)	=	81.0768

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED. BUOY. FLUX = 1.884 M**4/S**3; MOM. FLUX = 2.637 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)		U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
500.	113.7	6	1.5		10000.0	28.76	17.97	17.67	SS
600.	102.6	6	1.5		10000.0	28.76	21.24	18.43	SS
700.	95.32	6	1.0		10000.0	31.98	24.46	18.00	SS
800.	91.68	6	1.0	1.6	10000.0	31.98	27.63	18.75	SS
900.	88.22	6	1.0	1.6	10000.0	31.98	30.78	19.49	SS
1000.	84.90	6	1.0	1.6	10000.0	31.98	33.88	20.20	SS
1100.	81.72	6	1.0	1.6	10000.0	31.98	36.96	20.91	SS
1200.	78.65	б	1.0	1.6	10000.0	31.98	40.01	21.60	SS
1300.	72.96	6	1.0		10000.0	31.98	43.04	21.56	SS
1400.	70.35	6	1.0		10000.0	31.98	46.05	22.15	SS
1500.	67.83	6	1.0		10000.0	31.98	49.03	22.72	SS
1600.	65.43	6	1.0		10000.0	31.98	51.99	23.28	SS
1700.	63.15	6	1.0		10000.0	31.98	54.94	23.83	SS
1800.	60.99 58.93	6 6	1.0 1.0		10000.0 10000.0	31.98 31.98	57.87 60.78	24.37 24.90	SS SS
1900. 2000.	56.95	6	1.0		10000.0	31.98	63.68	24.90	SS
2000.	55.10	6	1.0		10000.0	31.98	66.56	25.42 25.93	SS
2200.	53.33	6	1.0		10000.0	31.98	69.42	25.93	SS
2300.	51.64	6	1.0		10000.0	31.98	72.28	26.93	SS
2400.	49.42	6	1.0		10000.0	31.98	75.12	26.60	SS
2500.	47.99	6	1.0		10000.0	31.98	77.95	27.07	SS
2600.	46.58	6	1.0		10000.0	31.98	80.76	27.48	SS
2700.	45.24	6	1.0	1.6	10000.0	31.98	83.57	27.89	SS
2800.	43.96	б	1.0		10000.0	31.98	86.36	28.29	SS
2900.	42.74	6	1.0		10000.0	31.98	89.15	28.68	SS
3000.	41.57	6	1.0		10000.0	31.98	91.92	29.07	SS
3500.	36.48	6	1.0		10000.0	31.98	105.65	30.92	SS
4000.	32.37	6	1.0		10000.0	31.98	119.17	32.65	SS
4500.	28.99	6	1.0		10000.0	31.98	132.50	34.28	SS
5000. 5500.	26.18 23.80	6 6	1.0 1.0		10000.0	31.98 31.98	145.67 158.69	35.83 37.30	SS SS
6000.	23.80	6	1.0		10000.0	31.98	171.58	37.30	SS
6500.	20.12	6	1.0		10000.0	31.98	184.34	39.61	SS
7000.	18.62	6	1.0		10000.0	31.98	196.99	40.83	SS
7500.	17.31	6	1.0		10000.0	31.98	209.54	41.96	SS
8000.	16.16	6	1.0	1.6	10000.0	31.98	221.98	43.05	SS
8500.	15.14	6	1.0	1.6	10000.0	31.98	234.34	44.10	SS
9000.	14.23	6	1.0	1.6	10000.0	31.98	246.61	45.11	SS
9500.	13.41	6	1.0		10000.0	31.98	258.79	46.10	SS
10000.	12.67	6	1.0		10000.0	31.98	270.90	47.06	SS
15000.	8.051	6	1.0		10000.0	31.98	388.43	54.93	SS
20000.	5.851	б	1.0	1.6	10000.0	31.98	500.95	60.33	SS
MAVIMIM	1-HR CONCE	זאר דידי ג סידואי			500. M				
		6			10000.0		17 97	17 67	SS
500.	110.7	Ũ	1.5	2.5	10000.0	20.70	11.01	17.07	00
DWASH=	MEANS NO) CALC MAI	DE (CON	C = 0.0))				
DWASH=N	O MEANS NO	BUILDING	DOWNW.	ASH USH	ED				
DWASH=H	S MEANS HU	JBER-SNYDI	ER DOWN	WASH US	SED				
	s means so								
DWASH=N	A MEANS DO	WNWASH NO	DT APPL	ICABLE,	, X<3*LB				
******	* * * * * * * * * *	********	******	*****	*				
****				~ ^ ^ * * *	•				

*** REGULATORY (Default) *** PERFORMING CAVITY CALCULATIONS WITH ORIGINAL SCREEN CAVITY MODEL (BRODE, 1988)

*** CAVITY CALCULAT	ION -	1 ***	*** CAVITY CALCULAT	ION -	2 ***
CONC (UG/M**3)	=	.0000	CONC (UG/M**3)	=	.0000
CRIT WS @10M (M/S)	=	99.99	CRIT WS @10M (M/S)	=	99.99
CRIT WS @ HS (M/S)	=	99.99	CRIT WS @ HS (M/S)	=	99.99
DILUTION WS (M/S)	=	99.99	DILUTION WS (M/S)	=	99.99
CAVITY HT (M)	=	18.07	CAVITY HT (M)	=	18.07
CAVITY LENGTH (M)	=	66.70	CAVITY LENGTH (M)	=	66.70
ALONGWIND DIM (M)	=	81.08	ALONGWIND DIM (M)	=	81.08

CAVITY CONC NOT CALCULATED FOR CRIT WS > 20.0 M/S. CONC SET = 0.0 $\,$

Stack #5: 1 Boiler / 1 Hot Water Heater - BOILHEAT

12/11/06 08:54:00

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

SIMPLE TERRAIN INPUTS:		
SOURCE TYPE	=	POINT
EMISSION RATE (G/S)	=	1.00000
STACK HEIGHT (M)	=	15.8496
STK INSIDE DIAM (M)	=	19.0133
STK EXIT VELOCITY (M/S	3)=	.0010
STK GAS EXIT TEMP (K)	=	366.4833
AMBIENT AIR TEMP (K)	=	273.0000
RECEPTOR HEIGHT (M)	=	.0000
URBAN/RURAL OPTION	=	RURAL
BUILDING HEIGHT (M)	=	17.9832
MIN HORIZ BLDG DIM (M)) =	81.0768
MAX HORIZ BLDG DIM (M)) =	81.0768

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = .226 M**4/S**3; MOM. FLUX = .000 M**4/S**2.

*** FULL METEOROLOGY ***

1 ERIO	AIN HEIGHI (51 0	. M ABO	VE DIA	IN DASE 0	SED FOR	FOLLOWING	DISIAN	010	
DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH	
500.	317.9	6	1.0		10000.0	16.71	25.74	23.41	SS	
600.	279.8	6	1.0		10000.0	16.71	28.90	23.95	SS	
700.	249.6	6	1.0		10000.0	16.71	32.03	24.49	SS	
800.	225.0	6	1.0		10000.0	16.71	35.13	25.02	SS	
900.	204.5	6	1.0		10000.0	16.71	38.19	25.53	SS	
1000.	187.3	6	1.0		10000.0	16.71	41.24	26.04	SS	
1100.	172.6	6	1.0		10000.0	16.71	44.25	26.54	SS	
1200.	162.3	6	1.0		10000.0	16.71	47.25	26.36	SS	
1300.	150.9	6	1.0		10000.0	16.71	50.23	26.86	SS	
1400.	141.1	б	1.0		10000.0	16.71	53.18	27.29	SS	
1500.	132.5	б	1.0		10000.0	16.71	56.12	27.70	SS	
1600.	124.8	б	1.0	1.3	10000.0	16.71	59.04	28.10	SS	
1700.	117.9	6	1.0	1.3	10000.0	16.71	61.95	28.50	SS	
1800.	111.6	б	1.0	1.3	10000.0	16.71	64.84	28.89	SS	
1900.	105.9	6	1.0		10000.0	16.71	67.71	29.27	SS	
2000.	100.7	6	1.0	1.3	10000.0	16.71	70.57	29.65	SS	
2100.	96.01	6	1.0	1.3	10000.0	16.71	73.42	30.02	SS	
2200.	91.67	б	1.0	1.3	10000.0	16.71	76.26	30.39	SS	
2300.	87.66	б	1.0	1.3	10000.0	16.71	79.08	30.75	SS	
2400.	83.96	б	1.0	1.3	10000.0	16.71	81.89	31.11	SS	
2500.	80.53	б	1.0	1.3	10000.0	16.71	84.70	31.46	SS	
2600.	77.35	6	1.0	1.3	10000.0	16.71	87.49	31.81	SS	
2700.	74.38	6	1.0	1.3	10000.0	16.71	90.27	32.15	SS	
2800.	71.62	б	1.0	1.3	10000.0	16.71	93.04	32.49	SS	
2900.	69.03	б	1.0	1.3	10000.0	16.71	95.80	32.83	SS	
3000.	66.60	6	1.0	1.3	10000.0	16.71	98.55	33.16	SS	
3500.	56.45	6	1.0	1.3	10000.0	16.71	112.17	34.76	SS	
4000.	48.76	б	1.0	1.3	10000.0	16.71	125.60	36.29	SS	
4500.	42.75	б	1.0	1.3	10000.0	16.71	138.85	37.74	SS	
5000.	37.94	6	1.0		10000.0	16.71	151.94	39.13	SS	
5500.	34.52	6	1.0		10000.0	16.71	164.90	39.74	SS	
6000.	31.24	б	1.0		10000.0	16.71	177.73	40.94	SS	
6500.	28.50	6	1.0		10000.0	16.71	190.43	42.07	SS	
7000.	26.17	6	1.0		10000.0	16.71	203.03	43.15	SS	
7500.	24.15	6	1.0		10000.0	16.71	215.53	44.20	SS	
8000.	22.39	6	1.0		10000.0	16.71	227.93	45.21	SS	
8500.	20.85	6	1.0		10000.0	16.71	240.24	46.20	SS	
9000.	19.49	6	1.0		10000.0	16.71	252.47	47.15	SS	
9500.	18.28	6	1.0		10000.0	16.71	264.62	48.08	SS	
10000.	17.20	6 6	1.0		10000.0	16.71 16.71	276.69	48.98	SS	
15000. 20000.	10.77 7.711	6	1.0 1.0		10000.0 10000.0	16.71	393.93 506.25	55.69 60.96	SS SS	
20000.	/./11	0	1.0	1.5	10000.0	10.71	500.25	00.90	22	
MAXIMUM 1 500.	l-HR CONCEN 317.9	TRATION 6	AT OR 1 1.0		500. M 10000.0	: 16.71	25.74	23.41	SS	
DWASH=NO DWASH=H DWASH=S	DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB									

CONC (1	*** CAVITY CALCULATION - 1 *** *** CAVITY CALCULATION - 2 *** CONC (UG/M**3) = 457.2 CONC (UG/M**3) = 457.2 CRIT WS @10M (M/S) = 1.00 CRIT WS @10M (M/S) = 1.00 CRIT WS @ HS (M/S) = 1.10 CRIT WS @ HS (M/S) = 1.10									

**************************************	ITY CALCULAT ************************************	IONS ************************************	**** TERRAIN HT (M) 0. (D (D ************************************			
**************************************	**************************************	**************************************	**** TERRAIN HT (M) 0. (D (D ************************************			
*** SUMMARY ************************************	OF SCREEN M ************* MAX CONC (UG/M**3) 	DIEL RESULTS	**** TERRAIN HT (M) 0. (D (D ************************************			
PROCEDURE SIMPLE TERRAIN BLDG. CAVITY-1 BLDG. CAVITY-2 ************************************	(UG/M**3) 317.9 457.2 457.2	MAX (M) 500. 67. 67. 87. 87. 87. 80. 87. 87. 80. 87. 87. 87. 87. 87. 87. 87. 87. 87. 87	HT (M) (D (D ************************************			
BLDG. CAVITY-1 BLDG. CAVITY-2 ************************************	317.9 457.2 457.2 ************************************	500. 67. 67. ******************************	0. (D (D **********			
BLDG. CAVITY-2 ************************************	457.2 ************************************	67. **************** ROUND CONCENT *****	(D ************************************			
*** REMEMBER TO IN *** REMEMBER TO IN **** SCREEN3 MOI *** VERSION DATE SIMPLE TERRAIN IN SOURCE TYPE EMISSION RATE STACK HEIGHT (STK INSIDE DIA STK KAS EXIT T AMBIENT AIR TE RECEPTOR HEIGH URBAN/RURAL OF BUILDING HEIGH MIN HORIZ BLDG MAX HORIZ BLDG THE REGULATORY (D THE REGULATORY (D SUOY. FLUX = *** FULL METEOROL	************ NCLUDE BACKG ********	************* ROUND CONCENT **********	**************************************	DIST = CAVI	TY LENGTH))
** REMEMBER TO IN ************************************	NCLUDE BACKG	ROUND CONCENT *************	TRATIONS **			
*** VERSION DATE SIMPLE TERRAIN IN SOURCE TYPE EMISSION RATE STACK HEIGHT (STK INSIDE DIA STK EXIT VELOC STK GAS EXIT T AMBIENT AIR TE RECEPTOR HEIGH URBAN/RURAL OF BUILDING HEIGH MIN HORIZ BLDG MAX HORIZ BLDG THE REGULATORY (D THE REGULATORY (D THE REGULATORY (D THE REGULATORY (D SUOY. FLUX = *** FULL METEOROL						
SOURCE TYPE EMISSION RATE STACK HEIGHT (STK INSIDE DIA STK EXIT VELOC STK GAS EXIT T AMBIENT AIR TE RECEPTOR HEIGH URBAN/RURAL OF BUILDING HEIGH MIN HORIZ BLDG MAX HORIZ BLDG THE REGULATORY (D THE REGULATORY (D THE REGULATORY (D THE REGULATORY (D SUOY. FLUX = *** FULL METEOROL						11/06 54:00
THE REGULATORY (L BUOY. FLUX = *** FULL METEOROL	= (G/S) = (M) = AM (M) = CITY (M/S) = TEMP (K) = EMP (K) = HT (M) = HT (M) =	1.00000 10.3632 .1016 52.9734 710.9278 273.0000 .0000 RURAL 17.9832				
*** FULL METEOROL	,				ENTERED.	
****	.826 M**4/S	**3; MOM.FL	LUX = 2.7	781 M**4/S*	*2.	
*** SCREEN AUTOMA *****		ES ***				
*** TERRAIN HEIGH	LOGY *** ************* ATED DISTANC	* * * * * *	K BASE USED	FOR FOLLOW	ING DISTAN	ICES ***
DIST CONC (M) (UG/M**3	LOGY *** ************ ATED DISTANC ***********) Z (M)	
500. 641.5	LOGY *** ************** ATED DISTANC ************** HT OF 0. 3) STAB (M ABOVE STACK J10M USTK M/S) (M/S)	(M) HT	(M) Y (M		

600.	538.6	6	1.0	1.0	10000.0	14.84	21.24	21.51	SS
700.	460.8	б	1.0	1.0	10000.0	14.84	24.46	22.11	SS
800.	402.0	б	1.0	1.0	10000.0	14.84	27.63	22.68	SS
900.	355.8	б	1.0		10000.0	14.84	30.78	23.24	SS
1000.	318.7	б	1.0	1.0	10000.0	14.84	33.88	23.79	SS
1100.	288.1	6	1.0	1.0	10000.0	14.84	36.96	24.33	SS
1200.	262.5	б	1.0		10000.0	14.84	40.01	24.86	SS
1300.	240.8	б	1.0		10000.0	14.84	43.04	25.38	SS
1400.	222.1	6	1.0		10000.0	14.84	46.05	25.89	SS
1500.	205.9	6	1.0		10000.0	14.84	49.03	26.40	SS
1600.	191.7	б	1.0		10000.0	14.84	51.99	26.89	SS
1700.	183.0	б	1.0		10000.0	14.84	54.94	26.57	SS
1800.	171.6	6	1.0	1.0	10000.0	14.84	57.87	27.05	SS
1900.	161.6	б	1.0		10000.0	14.84	60.78	27.46	SS
2000.	152.6	6	1.0	1.0	10000.0	14.84	63.68	27.86	SS
2100.	144.5	б	1.0		10000.0	14.84	66.56	28.26	SS
2200.	137.2	6	1.0	1.0	10000.0	14.84	69.42	28.66	SS
2300.	130.5	6	1.0	1.0	10000.0	14.84	72.28	29.04	SS
2400.	124.3	б	1.0	1.0	10000.0	14.84	75.12	29.43	SS
2500.	118.7	б	1.0	1.0	10000.0	14.84	77.95	29.80	SS
2600.	113.5	6	1.0	1.0	10000.0	14.84	80.76	30.17	SS
2700.	108.7	6	1.0		10000.0	14.84	83.57	30.54	SS
2800.	104.2	б	1.0		10000.0	14.84	86.36	30.90	SS
2900.	100.1	б	1.0		10000.0	14.84	89.15	31.25	SS
3000.	96.23	6	1.0	1.0	10000.0	14.84	91.92	31.60	SS
3500.	80.34	6	1.0	1.0	10000.0	14.84	105.65	33.29	SS
4000.	68.58	6	1.0	1.0	10000.0	14.84	119.17	34.89	SS
4500.	59.55	6	1.0	1.0	10000.0	14.84	132.50	36.41	SS
5000.	52.42	6	1.0	1.0	10000.0	14.84	145.67	37.85	SS
5500.	46.67	6	1.0	1.0	10000.0	14.84	158.69	39.24	SS
6000.	42.52	б	1.0	1.0	10000.0	14.84	171.58	39.92	SS
6500.	38.60	б	1.0	1.0	10000.0	14.84	184.34	41.10	SS
7000.	35.28	б	1.0		10000.0	14.84	196.99	42.22	SS
7500.	32.44	б	1.0		10000.0	14.84	209.54	43.30	SS
8000.	29.98	6	1.0		10000.0	14.84	221.98	44.34	SS
8500.	27.84	б	1.0		10000.0	14.84	234.34	45.35	SS
9000.	25.95	б	1.0		10000.0	14.84	246.61	46.33	SS
9500.	24.28	б	1.0		10000.0	14.84	258.79	47.28	SS
10000.	22.80	6	1.0		10000.0	14.84	270.90	48.20	SS
15000.	14.00	6	1.0		10000.0	14.84	388.43	55.35	SS
20000.	9.965	6	1.0		10000.0	14.84	500.95	60.68	SS
MAXIMUM 3	l-HR CONCEN	TRATION	AT OR BI	EYOND	500. M:				
500.	641.5	6	1.0	1.0	10000.0	14.84	17.97	21.19	SS
DWASH=H	MEANS NO (D MEANS NO H S MEANS HUB S MEANS SCHU	BUILDING ER-SNYDE	DOWNWAS R DOWNWA	SH USI ASH US	ED SED				
	A MEANS DOWN								
*** PERF(WITH OF	*********** REGULATORY ORMING CAVI' RIGINAL SCRI (BRODE, 19 ******	(Defaul TY CALCU EEN CAVI 988)	t) *** JLATIONS TY MODE	L					
	ITY CALCULA				** CAVITY				
	JG/M**3)		57.2		CONC (UG/M			57.2	
	5 @10M (M/S)				CRIT WS @1				
CRIT W	5 @ HS (M/S)) =	1.50		CRIT WS @			1.50	
DILUTI	ON WS (M/S)	=	1.00		DILUTION W				
CAVITY	HT (M)	= 1	8.07		CAVITY HT			8.07	
	LENGTH (M)				CAVITY LEN				
ALONGW:	IND DIM (M)	= 8	1.08	i	ALONGWIND	DIM (M)	= 83	1.08	
	*********			****	*				
	D OF CAVITY			****	*				

CALCULATION PROCEDURE	MAX CONC (UG/M**3)	DIST TO MAX (M)	TERRAIN HT (M)	
SIMPLE TERRAIN	641.5	500.	0.	
BLDG. CAVITY-1	457.2	67.		(DIST = CAVITY LENGTH)
BLDG. CAVITY-2	457.2	67.		(DIST = CAVITY LENGTH)

** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

Vladimir Ignatjuk, Initial Point Source - VLADIMIR

12/11/06 09:02:49

*** SCREEN3 MODEL RUN ***

*** VERSION DATED 96043 ***

SIMPLE TERRAIN INPUTS: SOURCE TYPE = POINT EMISSION RATE (G/S) = 1.00000 STACK HEIGHT (M) = 24.3840 STK INSIDE DIAM (M) = .4001 STK EXIT VELOCITY (M/S) = 18.6947 STK GAS EXIT TEMP (K) = 623.1500 AMBIENT AIR TEMP (K) = 273.0000 RECEPTOR HEIGHT (M) = .0000 URBAN/RURAL OPTION = RURAL BUILDING HEIGHT (M) = .0000 MIN HORIZ BLDG DIM (M) = .0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 4.121 M**4/S**3; MOM. FLUX = 6.126 M**4/S**2.

*** FULL METEOROLOGY ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
500.	23.20	3	2.5	2.7	800.0	47.06	55.15	33.07	NO
600.	23.03	3	2.0	2.2	640.0	52.73	65.21	39.17	NO
700.	22.25	3	1.5	1.6	480.0	62.18	75.27	45.42	NO
800.	21.34	3	1.5	1.6	480.0	62.18	84.83	51.01	NO
900.	19.89	3	1.5	1.6	480.0	62.18	94.30	56.56	NO
1000.	19.40	3	1.0	1.1	320.0	81.07	104.38	63.25	NO
1100.	18.59	3	1.0	1.1	320.0	81.07	113.62	68.65	NO
1200.	17.64	4	2.0	2.3	640.0	51.49	80.81	36.91	NO

1300.	17.12	4	2.0	2.3	640.0	51.49	86.86	38.78	NO
1400.	16.52	4	2.0	2.3	640.0	51.49	92.88	40.60	NO
1500.	16.15	4	1.5	1.7	480.0	60.53	99.08	42.93	NO
1600.	15.80	4	1.5	1.7	480.0	60.53	105.00	44.65	NO
1700. 1800.	15.39 14.96	4 4	$1.5 \\ 1.5$	$1.7 \\ 1.7$	480.0 480.0	60.53 60.53	110.89 116.74	46.33 47.99	NO NO
1900.	14.90	4	1.5	1.7	480.0	60.53	110.74 122.57	47.99	NO
2000.	14.04	4	1.5	1.7	480.0	60.53	122.37	51.20	NO
2100.	13.59	4	1.5	1.7	480.0	60.53	134.13	52.77	NO
2200.	13.13	4	1.5	1.7	480.0	60.53	139.86	54.32	NO
2300.	12.93	4	1.0	1.1	320.0	78.60	146.03	57.02	NO
2400.	12.72	4	1.0	1.1	320.0	78.60	151.71	58.49	NO
2500.	12.50	4	1.0	1.1	320.0	78.60	157.36	59.94	NO
2600.	12.44	5 5	1.0		10000.0	66.33	121.96	40.71 41.52	NO
2700. 2800.	12.42 12.37	5	1.0 1.0		10000.0 10000.0	66.33 66.33	126.16 130.34	41.52	NO NO
2900.	12.30	5	1.0		10000.0	66.33	134.50	43.11	NO
3000.	12.22	5	1.0		10000.0	66.33	138.65	43.89	NO
3500.	11.65	5	1.0			66.33	159.21	47.64	NO
4000.	10.95	5	1.0	1.4	10000.0	66.33	179.46	51.19	NO
4500.	10.43	б	1.0		10000.0	57.18	132.83	33.89	NO
5000.	10.27	6	1.0		10000.0	57.18	145.97	35.47	NO
5500.	10.03	6	1.0		10000.0	57.18	158.97	36.96	NO
6000. 6500.	9.747 9.445	6 6	1.0 1.0		10000.0 10000.0	57.18 57.18	171.83 184.58	38.39 39.76	NO NO
7000.	9.445	6	1.0		10000.0	57.18	197.22	41.08	NO
7500.	8.797	6	1.0		10000.0	57.18	209.75	42.22	NO
8000.	8.473	6	1.0		10000.0	57.18	222.18	43.31	NO
8500.	8.164	б	1.0	1.6	10000.0	57.18	234.53	44.36	NO
9000.	7.869	б	1.0	1.6	10000.0	57.18	246.79	45.38	NO
9500.	7.589	б	1.0		10000.0	57.18	258.96	46.36	NO
10000.	7.323	6	1.0		10000.0	57.18	271.06	47.32	NO
15000.	5.318	6	1.0			57.18	388.54	55.68	NO
20000.	4.110	6	1.0	1.0	10000.0	57.18	501.04	61.02	NO
MAXIMUM 1 500.	-HR COI 23.20	NCENTRATION 3	AT OR 1 2.5	BEYOND 2.7	500. М: 800.0	47.06	55.15	33.07	NO
DWASH=	MEANS	NO CALC MAD	E (CON	C = 0.0))				
DWASH=NO	MEANS	NO BUILDING	DOWNW	ASH USH	ED				
		HUBER-SNYDE							
		SCHULMAN-SC							
DWASH=NA	MEANS	DOWNWASH NO	T APPL	ICABLE,	, X<3*LB				
* * * * * * * * *	******	********	*****						
*** SCREE	IN DISC	RETE DISTANC	CES ***						

*** TERRA	IN HEIG	GHT OF 0.	M ABO	VE STAC	CK BASE US	SED FOR	FOLLOWING) DISTAN	CES ***
DIST	CONC		U10M	USTK	MIX HT	PLUME	SIGMA	SIGMA	
(M)	(UG/M*	*3) STAB	(M/S)	(M/S)	(M)	HT (M)	Y (M)	Z (M)	DWASH
13500.	5.814	6	1.0	1.6	10000.0	57.18	353.90	53.37	NO
DWASH=	MEANS	NO CALC MAD	E (CON	C = 0.0))				
		NO BUILDING							
DWASH=HS	MEANS	HUBER-SNYDE	R DOWN	WASH US	SED				
		SCHULMAN-SC							
DWASH=NA	MEANS	DOWNWASH NO	T APPL	ICABLE,	, X<3*LB				
****	*****	* * * * * * * * * * * *	*****	******	* * * * *				
		Y OF SCREEN							

CALCULAT	ION	MAX CON	ת D	IST TO	TERRAIN	I			
PROCEDU		MAX CON (UG/M**3) M	AX (M)	HT (M)				
SIMPLE TE	RRAIN	23.20		500.	0.				

Vladimir Ignatjuk, Final Area Source - VLAD_BIG

12/11/06 09:05:33

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

SIMPLE TERRAIN INPUTS: SOURCE TYPE = AREA EMISSION RATE (G/(S-M**2)) = .6666667E-08 SOURCE HEIGHT (M) = 57.1800 LENGTH OF LARGER SIDE (M) = 15000.0000 LENGTH OF SMALLER SIDE (M) = 10000.0000 RECEPTOR HEIGHT (M) = .0000 URBAN/RURAL OPTION = RURAL THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = .000 M**4/S**3; MOM. FLUX = .000 M**4/S**2.

*** FULL METEOROLOGY ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	MAX DIR (DEG)
500.	.3018		1.0	1.3	320.0	57.18	31.
600.	.3045	4	1.0				
700.		4	1.0				
800.	.3100	4	1.0	1.3		57.18	
900.	.3127	4	1.0				
1000.	.3154	4	1.0	1.3			
1100.	.3180	4	1.0	1.3	320.0	57.18	31.
1200.	.3207	4	1.0	1.3	320.0	57.18	31.
1300.	.3233	4	1.0	1.3	320.0	57.18	31.
1400.	.3272	4	1.0	1.3	320.0	57.18	30.
1500.	.3300	4	1.0	1.3	320.0	57.18	30.
1600.	.3334	4	1.0	1.3	320.0	57.18	31.
1700.	.3361	4	1.0	1.3	320.0	57.18	31.
1800.	.3387	4	1.0	1.3	320.0	57.18	31.
1900.	.3407	4	1.0	1.3	320.0	57.18	30.
2000.	.3433	4	1.0	1.3	320.0	57.18	30.
2100.	.3460	4	1.0	1.3	320.0	57.18	30.
2200.	.3486	4	1.0	1.3	320.0	57.18	30.
2300.	.3512	4	1.0	1.3	320.0	57.18	30.
2400.	.3538	4	1.0	1.3	320.0	57.18	30.

2500.	.3564	4	1.0	1.3	320.0	57.18	30.
2600.	.3590	4	1.0	1.3	320.0	57.18	30.
2700.	.3616	4	1.0	1.3	320.0	57.18	30.
2800.	.3642	4	1.0	1.3	320.0	57.18	30.
2900.	.3667	4	1.0	1.3	320.0	57.18	30.
3000.	.3693	4	1.0	1.3	320.0	57.18	30.
3500.	.3871	4	1.0	1.3	320.0	57.18	27.
4000.	.4027	4	1.0	1.3	320.0	57.18	30.
4500.	.4149	4	1.0	1.3	320.0	57.18	29.
5000.	.4273	4	1.0	1.3	320.0	57.18	29.
5500.	.4288	4	1.0	1.3	320.0	57.18	29.
6000.	.4401	4	1.0	1.3	320.0	57.18	29.
6500.	.4513	4	1.0	1.3	320.0	57.18	29.
7000.	.4615	4	1.0	1.3	320.0	57.18	28.
7500.	.4723	4	1.0	1.3	320.0	57.18	28.
8000.	.4829	4	1.0	1.3	320.0	57.18	28.
8500.	.4964	4	1.0	1.3	320.0	57.18	26.
9000.	.5085	4	1.0	1.3	320.0	57.18	32.
9500.	.5139	4	1.0	1.3	320.0	57.18	33.
10000.	.5159	4	1.0	1.3	320.0	57.18	33.
15000.	.4408	5	1.0	1.8	10000.0	57.18	32.
20000.	.3969	5	1.0	1.8	10000.0	57.18	31.
-	1-HR CONCEN			-			
9817.	.5167	4	1.0	1.3	320.0	57.18	33.
******	* * * * * * * * * * * *	*******	*****	k			

```
*** SCREEN DISCRETE DISTANCES ***
```

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	00110	MIX HT (M)	1 20112	
13500.	.4550	5	1.0	1.8	10000.0	57.18	32.

*** SUMMARY OF SCREEN MODEL RESULTS ***

CALCULATION	MAX CONC	DIST TO	TERRAIN
PROCEDURE	(UG/M**3)	MAX (M)	HT (M)
SIMPLE TERRAIN	.5167	9817.	0.

Fennica/Nordica, Initial Point Source - FENNICA

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 *** 12/11/06 09:02:49

SIMPLE TERRAIN INPUTS: SOURCE TYPE POINT = EMISSION RATE (G/S) = 1.00000 STACK HEIGHT (M) = 32.0040 STK INSIDE DIAM (M) = .2659
 STK INSIDE DIAM (M)

 STK EXIT VELOCITY (M/S)=
 36.0084

 STK GAS EXIT TEMP (K)
 =

 STR TEMP (K)
 =

 273.0000
 AMBIENT AIR TEMP (K) = RECEPTOR HEIGHT (M) = .0000 URBAN/RURAL OPTION = RURAL .0000 BUILDING HEIGHT (M) = MIN HORIZ BLDG DIM (M) = MAX HORIZ BLDG DIM (M) = .0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 3.269 M**4/S**3; MOM. FLUX = 10.920 M**4/S**2.

*** FULL METEOROLOGY ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
500.	21.16	2	1.5	1.6	480.0	64.02	83.26	51.91	NO
600.	21.29	2	1.0	1.1	320.0	80.02	98.46	63.90	NO
700.	21.05	3	1.5	1.7	480.0	62.92	75.01	45.00	NO
800.	20.37	3	1.5	1.7	480.0	62.92	84.61	50.63	NO
900.	20.44	3	1.0	1.1	320.0	78.38	94.61	57.08	NO
1000.	19.88	3	1.0	1.1	320.0	78.38	103.96	62.56	NO
1100.	18.94	3	1.0	1.1	320.0	78.38	113.23	68.01	NO
1200.	17.83	3	1.0	1.1	320.0	78.38	122.43	73.44	NO
1300.	16.67	3	1.0	1.1	320.0	78.38	131.57	78.84	NO
1400.	15.52	3	1.0	1.1	320.0	78.38	140.64	84.22	NO
1500.	15.05	4	1.5	1.8	480.0	61.17	98.89	42.49	NO
1600.	14.77	4	1.5	1.8	480.0	61.17	104.82	44.23	NO
1700.	14.44	4	1.5	1.8	480.0	61.17	110.72	45.93	NO
1800.	14.06	4	1.5	1.8	480.0	61.17	116.58	47.60	NO
1900.	13.86	4	1.0	1.2	320.0	75.76	122.77	50.11	NO
2000.	13.74	4	1.0	1.2	320.0	75.76	128.55	51.69	NO
2100.	13.59	4	1.0	1.2	320.0	75.76	134.31	53.24	NO
2200.	13.39	4	1.0	1.2	320.0	75.76	140.04	54.77	NO
2300.	13.17	4	1.0	1.2	320.0	75.76	145.75	56.28	NO
2400.	12.93	4	1.0	1.2	320.0	75.76	151.43	57.77	NO
2500.	12.68	4	1.0	1.2	320.0	75.76	157.09	59.24	NO
2600.	12.42	4	1.0	1.2	320.0	75.76	162.73	60.68	NO
2700.	12.15	4	1.0	1.2	320.0	75.76	168.34	62.12	NO
2800.	11.88	4	1.0	1.2	320.0	75.76	173.93	63.53	NO

2200. 11.61 4 1.0 1.2 320.0 75.76 179.51 64.22 NO 3000. 11.34 4 1.0 1.2 320.0 75.76 122.55 72.56 NO 4000. 9.107 5 1.0 1.5 10000.0 69.62 199.37 53.90 NO 5001. 8.560 5 1.0 1.5 10000.0 69.62 199.37 53.90 NO 5000. 7.520 5 1.0 1.5 10000.0 69.62 239.66 59.44 NO 6000. 7.163 6 1.0 1.9 10000.0 60.89 134.53 39.52 NO 7000. 6.861 6 1.0 1.9 10000.0 60.89 134.53 39.52 NO 7000. 6.661 6 1.0 1.9 10000.0 60.89 137.17 40.84 NO 7000. 6.661 6 1.0 1.9 10000.0 60.89 209.70 41.98 NO 8000. 6.661 6 1.0 1.9 10000.0 60.89 222.14 43.08 NO 8000. 6.660 6 1.0 1.9 10000.0 60.89 224.14 43.08 NO 8000. 6.263 6 1.0 1.9 10000.0 60.89 234.675 45.16 NO 9000. 6.703 6 1.0 1.9 10000.0 60.89 384.55 NO 10000. 5.703 6 1.0 1.9 10000.0 60.89 384.55 NO 10000. 5.703 6 1.0 1.9 10000.0 60.89 384.55 NO 10000. 4.255 6 1.0 1.9 10000.0 60.89 384.55 NO 10000. 4.255 6 1.0 1.9 10000.0 60.89 384.55 NO 20000. 3.338 6 1.0 1.9 10000.0 80.89 501.02 60.86 NO MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO MASH= MEANS NO CALC MADE (CONC = 0.0) MASH=MEANS NO CALC MADE (CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M)										
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	2900.	11.61	4	1.0	1.2	320.0	75.76	179.51	64.92	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	3000.	11.34	4	1.0	1.2	320.0	75.76	185.06	66.31	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	3500. 4000	10.05 9 107	4 5	1.0	15	320.0	75.70 69.62	212.55 179 38	72.50	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	4500.	8.560	5	1.0	1.5	10000.0	69.62	199.37	53.90	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	5000.	8.026	5	1.0	1.5	10000.0	69.62	219.12	56.74	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	5500.	7.520	5	1.0	1.5	10000.0	69.62	238.66	59.44	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	6000.	7.163	6	1.0	1.9	10000.0	60.89	171.78	38.14	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	6500.	7.023	6	1.0	1.9	10000.0	60.89	184.53	39.52	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	7000.	6.861	6	1.0	1.9	10000.0	60.89	197.17	40.84	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	7500. 8000	6.661 6.460	6	1.0	1.9	10000.0	60.89	209.70	41.98	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	8500.	6.263	6	1.0	1.9	10000.0	60.89	234.48	44.14	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	9000.	6.070	6	1.0	1.9	10000.0	60.89	246.75	45.16	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	9500.	5.883	б	1.0	1.9	10000.0	60.89	258.93	46.15	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	10000.	5.703	6	1.0	1.9 1	10000.0	60.89	271.03	47.11	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	15000.	4.265	6	1.0	1.9	10000.0	60.89	388.52	55.50	NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 555. 21.54 2 1.0 1.1 320.0 80.02 92.07 59.02 NO DWASH=NEMEANS NO CALC MADE (CONC = 0.0) DWASH=NS MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	20000.	3.338	6	1.0	1.9	10000.0	60.89	501.02	60.86	NO
DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***** **** SCREEN DISCRETE DISTANCES **** **** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES *** DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH 										
DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB **** SCREEN DISCRETE DISTANCES *** **** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES *** DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH 6000. 7.163 6 1.0 1.9 10000.0 60.89 171.78 38.14 NO DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=S MEANS CHULMAN-SCIRE DOWNWASH USED DWASH=S MEANS CHULMAN-SCIRE DOWNWASH USED DWASH=S MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************								92.07	59.02	NO
DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB **** SCREEN DISCRETE DISTANCES *** **** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES *** DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH 6000. 7.163 6 1.0 1.9 10000.0 60.89 171.78 38.14 NO DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=S MEANS CHULMAN-SCIRE DOWNWASH USED DWASH=S MEANS CHULMAN-SCIRE DOWNWASH USED DWASH=S MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************		MEANO N		(00)10		`				
DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB **** SCREEN DISCRETE DISTANCES *** **** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES *** DIST CONC ULOM USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH 										
DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************										
**** SCREEN DISCRETE DISTANCES *** **** SCREEN DISCRETE DISTANCES *** **** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES **** DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH 										
*** SCREEN DISCRETE DISTANCES *** **** SCREEN DISCRETE DISTANCES *** DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH 	DWASH=NA	MEANS D	OWNWASH NOT	APPLI	CABLE,	X<3*LB				
*** SCREEN DISCRETE DISTANCES *** **** SCREEN DISCRETE DISTANCES **** DIST CONC U10M USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH 										
**** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES *** DIST CONC UIOM USTK MIX HT PLUME SIGMA SIGMA (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH 										
DISTCONCU10MUSTKMIX HTPLUMESIGMASIGMA(M)(UG/M**3)STAB(M/S)(M/S)(M)HT(M)YM)Z(M)DWASH6000.7.16361.01.910000.060.89171.7838.14NODWASH=MEANS NO CALC MADE (CONC = 0.0)DWASH=NO MEANS NO BUILDING DOWNWASH USEDDWASH=NS MEANS HUBER-SNYDER DOWNWASH USEDDWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USEDDWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB										
DISTCONCU10MUSTKMIX HTPLUMESIGMASIGMA(M)(UG/M**3)STAB(M/S)(M/S)(M)HT(M)YM)Z(M)DWASH6000.7.16361.01.910000.060.89171.7838.14NODWASH=MEANS NO CALC MADE (CONC = 0.0)DWASH=NO MEANS NO BUILDING DOWNWASH USEDDWASH=NS MEANS HUBER-SNYDER DOWNWASH USEDDWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USEDDWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB										
6000. 7.163 6 1.0 1.9 10000.0 60.89 171.78 38.14 NO DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB	*** TERRA	IN HEIGH	FOF 0.	M ABOV	/E STACI	K BASE U	SED FOR	FOLLOWING	DISTAN	CES ***
6000. 7.163 6 1.0 1.9 10000.0 60.89 171.78 38.14 NO DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB	DIST	CONC		U10M	USTK	MIX HT	PLUME	SIGMA	SIGMA	
6000. 7.163 6 1.0 1.9 10000.0 60.89 171.78 38.14 NO DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=NS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB	(M)	(UG/M**3) STAB (M/S)	(M/S)	(M)	HT (M)	Y (M)	Z (M)	DWASH
DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************										
DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************		1.105	Ũ	1.0	1.7	10000.0	00.05	1/1./0	50.11	110
DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	DWA CH-		O CALC MADE		2 = 0.0)				
DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************										
DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***********************************	DWASH=NC									
**************************************	DWASH=NC DWASH=HS	S MEANS H	UBER– SNYDER	DOWNV	VASH USI	ED				
*** SUMMARY OF SCREEN MODEL RESULTS *** *********************************	DWASH=NC DWASH=HS DWASH=SS	5 MEANS H 5 MEANS S	UBER-SNYDER CHULMAN-SCI	DOWNV RE DOV	VASH USI VNWASH (ED JSED				
**************************************	DWASH=NC DWASH=HS DWASH=SS	5 MEANS H 5 MEANS S	UBER-SNYDER CHULMAN-SCI	DOWNV RE DOV	VASH USI VNWASH (ED JSED				
CALCULATIONMAX CONCDIST TOTERRAINPROCEDURE(UG/M**3)MAX (M)HT (M)SIMPLE TERRAIN21.54555.0.	DWASH=NC DWASH=HS DWASH=SS DWASH=NA	MEANS H MEANS So MEANS Do	UBER-SNYDER CHULMAN-SCI OWNWASH NOT	DOWNW RE DOW APPLI	VASH USI VNWASH (CABLE,	ED JSED X<3*LB ****				
PROCEDURE (UG/M**3) MAX (M) HT (M) SIMPLE TERRAIN 21.54 555. 0.	DWASH=NC DWASH=HS DWASH=SS DWASH=NA ****	MEANS H MEANS D MEANS D SUMMARY	UBER-SNYDER CHULMAN-SCI OWNWASH NOT **************** OF SCREEN M	DOWNV RE DOV APPLI ****** ODEL F	VASH USI VNWASH (CABLE, ******* RESULTS	ED JSED X<3*LB **** ***				
SIMPLE TERRAIN 21.54 555. 0.	DWASH=NC DWASH=HS DWASH=SS DWASH=NA ****	MEANS H MEANS D MEANS D SUMMARY	UBER-SNYDER CHULMAN-SCI OWNWASH NOT **************** OF SCREEN M	DOWNV RE DOV APPLI ****** ODEL F	VASH USI VNWASH (CABLE, ******* RESULTS	ED JSED X<3*LB **** ***				
SIMPLE TERRAIN 21.54 555. 0.	DWASH=NC DWASH=HS DWASH=SS DWASH=NA **** **** CALCULAT	MEANS H MEANS So MEANS Do MEANS Do MEANS Do MEANS Do MEANS Do MEANS Do MEANS Do MEANS Do MEANS Do	UBER-SNYDER CHULMAN-SCI OWNWASH NOT ************************************	DOWNW RE DOW APPLI ****** ODEL F ******	VASH USI NNWASH U CCABLE, RESULTS	ED JSED X<3*LB **** *** ***	Ν			
	DWASH=NC DWASH=HS DWASH=SS DWASH=NA **** **** CALCULAT	MEANS H MEANS So MEANS Do MEANS Do MEANS Do MEANS Do MEANS Do MEANS Do MEANS Do MEANS Do MEANS Do	UBER-SNYDER CHULMAN-SCI OWNWASH NOT ************************************	DOWNW RE DOW APPLI ****** ODEL F ******	VASH USI NNWASH U CCABLE, RESULTS	ED JSED X<3*LB **** *** ***	N)			
*****	DWASH=NC DWASH=HS DWASH=SS DWASH=NA **** **** CALCULAT PROCEDU	MEANS H MEANS D MEANS D SUMMARY CON RE	UBER-SNYDER CHULMAN-SCI DWNWASH NOT ************************************	DOWNW RE DOW APPLI ****** ODEL F ******	VASH USJ VNWASH T CCABLE, RESULTS EST TO AX (M)	ED JSED X<3*LB **** **** TERRAI HT (M)			
***************************************	DWASH=NC DWASH=HS DWASH=SS DWASH=NA **** **** CALCULAT PROCEDU	MEANS H MEANS D MEANS D SUMMARY CON RE	UBER-SNYDER CHULMAN-SCI DWNWASH NOT ************************************	DOWNW RE DOW APPLI ****** ODEL F ******	VASH USJ VNWASH T CCABLE, RESULTS EST TO AX (M)	ED JSED X<3*LB **** **** TERRAI HT (M)			
	DWASH=NC DWASH=HS DWASH=SS DWASH=NA **** **** CALCULAT PROCEDU	MEANS H MEANS D MEANS D SUMMARY CON RE	UBER-SNYDER CHULMAN-SCI DWNWASH NOT ************************************	DOWNW RE DOW APPLI ****** ODEL F ******	VASH USJ VNWASH T CCABLE, RESULTS EST TO AX (M)	ED JSED X<3*LB **** **** TERRAI HT (M)			

** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

*** SCREEN3 MODEL RUN ***
*** VERSION DATED 96043 ***
SIMPLE TERRAIN INPUTS:
SOURCE TYPE = AREA
EMISSION RATE (G/(S-M**2)) = .200000E-07
SOURCE HEIGHT (M) = 60.8900
LENGTH OF LARGER SIDE (M) = 10000.0000
LENGTH OF SMALLER SIDE (M) = 5000.0000
RECEPTOR HEIGHT (M) = .0000
URBAN/RURAL OPTION = RURAL
THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED.
THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

12/11/06 09:05:33

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = .000 M**4/S**3; MOM. FLUX = .000 M**4/S**2.

*** FULL METEOROLOGY ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	MAX DIR (DEG)
500.	.5526	4	1.0	1.3		60.89	22.
600.	.5626	4	1.0	1.3	320.0	60.89	22.
700.	.5726	4	1.0	1.3	320.0	60.89	22.
800.	.5810	4	1.0	13	320 0	60 89	21.
900.	.5910	4	1.0	1.3	320.0	60.89	21.
1000.	.6009	4	1.0	1.3	320.0	60.89	21.
1100.	.6107	4	1.0	1.3	320.0	60.89	21.
1200.	.6205	4	1.0	1.3	320.0	60.89	21.
1300.	.6302	4	1.0	1.3	320.0	60.89	21.
1400.	.6399	4			320.0		21.
1500.	.6495	4		1.3	320.0	60.89	21.
1600.	.6590	4	1.0	1.3	320.0 320.0 320.0	60.89	21.
1700.	.6683	4	1.0	1.3	320.0	60.89	21.
1800.	.6758	4	1.0	1.3	320.0	60.89	20.
1900.	.6851	4	1.0		320.0		
2000.	.6943	4			320.0		
2100.	.7034	4			320.0		
2200.	.7125	4			320.0		
2300.	.7215	4				60.89	20.
2400.	.7304	4				60.89	20.
2500.	.7393	4	1.0			60.89	20.
2600.	.7482	4	1.0	1.3	320.0	60.89	20.
2700.	.7570	4	1.0	1.3	320.0	60.89	20.
2800.	.7641	4	1.0		320.0	60.89	19.
2900.	.7728	4	1.0		320.0		19.
3000.	.7815	4 4			320.0		19.
3500.	.8224 .8640	4 4		1.3	320.0		18.
4000. 4500.	.9030	4	1.0 1.0	1.3 1.3		60.89 60.89	18. 17.
4500. 5000.	.9030	4	1.0	1.3 1.3	320.0	60.89	17. 21.
5500.	.9430	4	1.0	1 2	320.0	60.89	21. 21.
6000.	1.024	4	1.0	1 2	320.0	60.89	
6500.	1.024	4	1.0	1 2	320.0	60.89	
7000.	1.034	4			320.0		
7500.	1.013	4			320.0		
8000.	.9871	4			320.0		
		-		2.5	220.0		21.

 8500.
 .9586
 4
 1.0
 1.3
 320.0
 60.89
 23.

 9000.
 .9316
 4
 1.0
 1.3
 320.0
 60.89
 23.

 9500.
 .9044
 4
 1.0
 1.3
 320.0
 60.89
 22.

 10000.
 .8763
 4
 1.0
 1.3
 320.0
 60.89
 20.

 15000.
 .7511
 5
 1.0
 1.9
 10000.0
 60.89
 17.

 20000.
 .6704
 5
 1.0
 1.9
 10000.0
 60.89
 6.

 MAXIMUM 1-HR CONCENTRATION AT OR BEYOND
 500. M:
 6609.
 1.041
 4
 1.0
 1.3
 320.0
 60.89
 25.

 **** SCREEN DISCRETE DISTANCES ****

 TERRAIN HEIGHT OF
 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ****

 **** TERRAIN HEIGHT OF
 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ****

 MIST
 CONC
 U10M
 USTK
 MIX HT
 PLUME
 MAX DIR

 (M)
 (UG/M**3)
 STAB
 (M/S)
 (M)
 HT (M)
 <td

6000. 1.024 4 1.0 1.3 320.0 60.89 21.

CALCULATION	MAX CONC	DIST TO	TERRAIN
PROCEDURE	(UG/M**3)	MAX (M)	HT (M)
SIMPLE TERRAIN	1.041	6609.	0.

Jim Kilabuk - KILABUK

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

SOURCE TYPE = POINT EMISSION RATE (G/S) = 1.00000 STACK HEIGHT (M) = 15.2400 STK INSIDE DIAM (M) = .1836 STK EXIT VELOCITY (M/S)= 39.9990 STK GAS EXIT TEMP (K) = 699.8167
STACK HEIGHT (M) = 15.2400 STK INSIDE DIAM (M) = .1836 STK EXIT VELOCITY (M/S)= 39.9990
STK INSIDE DIAM (M).1836STK EXIT VELOCITY (M/S)=39.9990
STK EXIT VELOCITY (M/S)= 39.9990
STK GAS FXIT TEMP (K) = 699 816'
AMBIENT AIR TEMP (K) = 273.0000
RECEPTOR HEIGHT (M) = .0000
URBAN/RURAL OPTION = RURAI
BUILDING HEIGHT (M) = .0000
MIN HORIZ BLDG DIM (M) = .0000
MAX HORIZ BLDG DIM (M) = .0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 2.015 M**4/S**3; MOM. FLUX = 5.258 M**4/S**2.

*** FULL METEOROLOGY ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)		SIGMA Z (M)	DWASH
500.	56.84	3	1.5	1.6	480.0	38.40		33.10	NO
600.	53.26	4	2.0	2.1	640.0	32.25	42.99	21.76	NO
700.	51.91	4	2.0	2.1	640.0	32.25	49.43	24.52	NO
800.	50.13	4	1.5	1.6	480.0	37.92	55.95	27.56	NO
900.	48.17	4 4	1.5	1.6	480.0	37.92	62.22	30.17	NO
1000.	45.47			1.6	480.0		68.43	32.74	NO
1100.	42.87	4		1.1	320.0		74.94	35.48	NO
1200.	41.40	4	1.0	1.1	320.0	49.26	81.02	37.38	NO
1300.	39.77	4	1.0	1.1	320.0	49.26	87.06	39.22	NO
1400.	38.07	4	1.0	1.1	320.0		93.06	41.03	NO
1500.	36.35	4	1.0	1.1	320.0		99.02	42.79	NO
1600.	34.68	4	1.0	1.1	320.0	49.26	104.94	44.51	NO
1700.	33.06	4	1.0	1.1	320.0	49.26	110.83	46.20	NO
1800.	31.50	4	1.0	1.1	320.0	49.26	116.69	47.86	NO
1900.	30.03	4		1.1	320.0	49.26	122.52	49.49	NO
2000.	29.17	5			10000.0	50.15	96.22	34.94	NO
2100.	29.47	6 6	1.0		10000.0		67.04	23.62	NO
2200.	29.77 29.98	6	1.0 1.0		10000.0 10000.0		69.89	24.16	NO
2300. 2400.	30.10	6	1.0		10000.0	43.41	72.72 75.55	24.69 25.21	NO NO
2400.	30.15	6	1.0 1.0		10000.0	43.41		25.21	NO
2600.	30.13	6	1.0		10000.0	43.41		25.72	NO
2700.	30.06	-			10000.0	43.41	83.96	26.71	NO
2800.	29.95	6	1.0		10000.0	43.41	86.74	27.20	NO
2900.	29.79	6 6 6	1.0		10000.0		89.51	27.68	NO
3000.	29.60	6	1.0		10000.0		92.27	28.15	NO
3500.	27.96	6	1.0		10000.0	43.41	105.96	30.08	NO
4000.	26.23	6	1.0 1.0 1.0		10000.0	43.41	119.44	31.87	NO
4500.	24.55	6	1.0	1.3	10000.0	43.41	132.75	33.55	NO
5000.	22.96	6	1.0	1.3	10000.0	43.41	145.89	35.14	NO
5500.	21.50	6 6	1.0	1.3	10000.0	43.41	158.90	36.65	NO
6000.	20.16	6	1.0	1.3	10000.0	43.41	171.77	38.09	NO
6500.	18.94	6		1.3	10000.0	43.41	184.52	39.47	NO
7000.	17.82	б	1.0	1.3	10000.0	43.41	197.16	40.80	NO
7500.	16.80	6 6	1.0		10000.0	43.41	209.69	41.94	NO
8000.	15.88				10000.0	43.41	222.13	43.04	NO
8500.	15.04	6	1.0		10000.0	43.41		44.10	NO
9000.	14.28	6			10000.0	43.41	246.74	45.12	NO
9500.	13.58	6	1.0	1.3	10000.0	43.41	258.92	46.11	NO

10000.12.9461.01.310000.043.41271.0247.0815000.8.62561.01.310000.043.41388.5155.4720000.6.42261.01.310000.043.41501.0160.83 NO NO NO MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 500. 56.84 3 1.5 1.6 480.0 38.40 55.17 33.10 NO DWASH= MEANS NO CALC MADE (CONC = 0.0)DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ****** *** SCREEN DISCRETE DISTANCES *** *** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES *** U10M USTK MIX HT PLUME DIST CONC SIGMA SIGMA Z (M) DWASH (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) -----_____ _ ____ ____ ___ 500. 56.84 3 1.5 1.6 480.0 38.40 55.17 33.10 NO DWASH= MEANS NO CALC MADE (CONC = 0.0)DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED

DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** SUMMARY OF SCREEN MODEL RESULTS ***

CALCULATION	MAX CONC	DIST TO	TERRAIN
PROCEDURE	(UG/M**3)	MAX (M)	HT (M)
SIMPLE TERRAIN	56.84	500.	0.